Improved outcomes for patients with cerebrovascular malformations at high-volume centers: The impact of surgeon and hospital volume in the United States, 2000-2009

Document Type

Article

Abstract

OBJECTIVE Treatment of cerebrovascular malformations has grown in complexity with the development of multimodal approaches, including microsurgery, endovascular treatments, and radiosurgery. In spite of this changing standard of care, the provision of care continues across a variety of settings. The authors sought to determine the risk of adverse outcome after treatment of patients with vascular malformations in the US. Patient, surgeon, and hospital characteristics, including volume, were tested as potential outcome predictors. METHODS The authors examined data collected between 2000 and 2009 in the Nationwide Inpatient Sample (NIS) database, assessing safety, quality, and cost-effectiveness. They performed multivariate analyses of trends in microsurgical, radiosurgical, and endovascular treatment by hospital and surgeon volume, using death, routine discharge percentage, length of stay (LOS), complications, and hospital charges as end points. They further computed the value of care, which was defined as the ratio of the functional outcome (routine discharge percentage) to cost of care to the payer (hospital charges). RESULTS The authors identified 8227 patients with vascular malformations who were treated at US hospitals. Hospitals and surgeons were classified by yearly case volume. Compared with low-volume hospitals (2 or fewer cases/year), high-volume hospitals (16 or more cases/year) had shorter LOS (3 vs 2 days, p = 0.005), higher total charges ($37,374 vs $19,986, p = 0.003), more frequent discharge to home (p < 0.001), and lower mortality rates (0.7% vs 1.16%, p = 0.010). High-volume surgeons (7 or more cases/year) likewise had superior outcomes compared with low-volume surgeons (1 or fewer cases/year), with shorter LOS (2 vs 3 days, p = 0.03), more frequent discharge to home (p < 0.001), and lower mortality rates (0.7% vs 1.10%, p = 0.005). Underlying these outcomes, the rates of intervention for surgery, angiography, embolization, and radiosurgery were likewise significantly different in high- versus low-volume practices. Based on these results the authors modeled how outcomes might change if care were consolidated at designated centers of excellence (COEs), and found that on an annual basis, care at high-volume hospital COEs would result in 18.5 fewer deaths, 1252.1 fewer hospital days, 182.7 more discharges home without additional services, 48.5 fewer medical complications, and 117.4 fewer perioperative complications. Surgeon-level rates for high-volume COEs demonstrated an even larger benefit over current standards, with 27.4 fewer deaths, 10,713.7 fewer hospital days, a $51.6-million reduction in charges, 370.9 additional routine discharges, and reduced complications in all categories (27.8 fewer surgical, 198.0 fewer medical, and 32.1 fewer perioperative) compared with care at non-COEs. CONCLUSIONS For patients with vascular malformations who were treated in the US between 2000 and 2009, treatment performed at high-volume centers was associated with significantly lower morbidity and, for high-volume surgeons, with lower mortality rates. These data suggest that treatment by high-volume institutions and surgeons will yield superior outcomes and superior value. The authors therefore advocate the creation of care paradigms that triage patients to highvolume institutions and surgeons, which can serve as cerebrovascular COEs.

Publication Date

7-1-2017

Publication Title

Journal of Neurosurgery

ISSN

00223085

E-ISSN

19330693

Volume

127

Issue

1

First Page

69

Last Page

80

PubMed ID

27739942

Digital Object Identifier (DOI)

10.3171/2016.7.JNS15925

This document is currently not available here.

Share

COinS