Department

neurology

Document Type

Article

Abstract

Background: Apolipoprotein E4 (ApoE4) is the major genetic risk factor of Alzheimer's disease (AD). ApoE4 carriers have cerebral hypometabolism which is thought as a harbinger of AD. Our previous studies indicated ketones improved mitochondria energy metabolism via sirtuin 3 (Sirt3). However, it is unclear whether ketones upregulate Sirt3 and improve ApoE4-related learning and memory deficits. Results: Ketones improved learning and memory abilities of ApoE4 mice but not ApoE3 mice. Sirt3, synaptic proteins, the NAD+/ NADH ratio, and ATP production were significantly increased in the hippocampus and the cortex from ketone treatment. Methods: Human ApoE3 and ApoE4 transgenic mice (9-month-old) were treated with either ketones or normal saline by daily subcutaneous injections for 3 months (ketones, beta-hydroxybutyrate (BHB): 600 mg/kg/day; acetoacetate (ACA): 150 mg/kg/day). Learning and memory ability of these mice were assessed. Sirt3 protein, synaptic proteins (PSD95, Synaptophysin), the NAD+/ NADH ratio, and ATP levels were measured in the hippocampus and the cortex. Conclusion: Our current studies suggest that ketones improve learning and memory abilities of ApoE4 transgenic mice. Sirt3 may mediate the neuroprotection of ketones by increasing neuronal energy metabolism in ApoE4 transgenic mice. This provides the foundation for Sirt3's potential role in the prevention and treatment of AD.

Medical Subject Headings

neurology

Publication Date

2019

Publication Title

Aging

ISSN

1945-4589

Volume

11

Issue

13

First Page

4579

Last Page

4586

Digital Object Identifier (DOI)

10.18632/aging.102070

Share

COinS