Interactive use of cerebral angiography and magnetoencephalography in arteriovenous malformations: Technical note

Document Type

Article

Abstract

OBJECTIVE: To minimize the risks associated with treating cortical cerebral arteriovenous malformations (AVMs), we developed a technique combining functional imaging and cerebral angiography. The functional loci obtained by performing magnetoencephalography (MEG) are projected onto stereoscopic pairs of a stereotactically derived digital subtraction angiogram. The result is a simultaneous three-dimensional perspective of the angioarchitecture of an AVM and its relationship to the sensorimotor cortex. METHODS: Eight patients underwent multimodality brain imaging, including magnetic resonance imaging, functional mapping via MEG, and stereotactic angiography using a modified Compass fiducial system (Compass International, Rochester, MN). The coordinates derived by performing MEG were superimposed onto stereotactic, stereoscopic, angiographic pairs using custom-made distortion correction and coordinate transfer software. RESULTS: The magnetoencephalographic angiogram allowed simultaneous viewing of the angioarchitecture of the AVM nidus, the feeding vessels, and the draining veins and their relationship to the normal cerebral vasculature and functional cortex. This imaging technique was particularly valuable in identifying en passant vessels that supplied functional cortex and was used during the treatment of these lesions. CONCLUSION: The techniques of MEG and cerebral angiography were combined to provide simultaneous viewing of both modalities in a three-dimensional perspective. This technique can aid in risk stratification in the management of patients with cerebral AVMs. In addition, this technique can facilitate the selective targeting of vessels, thus potentially reducing the risks associated with embolization of these formidable lesions.

Publication Date

4-1-2002

Publication Title

Neurosurgery

ISSN

0148396X

Volume

50

Issue

4

First Page

903

Last Page

911

PubMed ID

11904049

Digital Object Identifier (DOI)

10.1097/00006123-200204000-00047

This document is currently not available here.

Share

COinS