Tractography-Based Surgical Targeting for Thalamic Deep Brain Stimulation: A Comparison of Probabilistic vs Deterministic Fiber Tracking of the Dentato-Rubro-Thalamic Tract

Document Type

Article

Abstract

BACKGROUND: The ventral intermediate (VIM) thalamic nucleus is the main target for the surgical treatment of refractory tremor. Initial targeting traditionally relies on atlas-based stereotactic targeting formulas, which only minimally account for individual anatomy. Alternative approaches have been proposed, including direct targeting of the dentato-rubro-thalamic tract (DRTT), which, in clinical settings, is generally reconstructed with deterministic tracking. Whether more advanced probabilistic techniques are feasible on clinical-grade magnetic resonance acquisitions and lead to enhanced reconstructions is poorly understood. OBJECTIVE: To compare DRTT reconstructed with deterministic vs probabilistic tracking. METHODS: This is a retrospective study of 19 patients with essential tremor who underwent deep brain stimulation (DBS) with intraoperative neurophysiology and stimulation testing. We assessed the proximity of the DRTT to the DBS lead and to the active contact chosen based on clinical response. RESULTS: In the commissural plane, the deterministic DRTT was anterior (P < 10-4) and lateral (P < 10-4) to the DBS lead. By contrast, although the probabilistic DRTT was also anterior to the lead (P < 10-4), there was no difference in the mediolateral dimension (P = .5). Moreover, the 3-dimensional Euclidean distance from the active contact to the probabilistic DRTT was smaller vs the distance to the deterministic DRTT (3.32 ± 1.70 mm vs 5.01 ± 2.12 mm; P < 10-4). CONCLUSION: DRTT reconstructed with probabilistic fiber tracking was superior in spatial proximity to the physiology-guided DBS lead and to the empirically chosen active contact. These data inform strategies for surgical targeting of the VIM.

Medical Subject Headings

Deep Brain Stimulation (methods); Essential Tremor (diagnostic imaging, surgery); Humans; Retrospective Studies; Thalamus (diagnostic imaging, physiology, surgery); Tremor

Publication Date

4-1-2022

Publication Title

Neurosurgery

E-ISSN

1524-4040

Volume

90

Issue

4

First Page

419

Last Page

425

PubMed ID

35044356

Digital Object Identifier (DOI)

10.1227/NEU.0000000000001840

Share

COinS