A Prospective Cohort Evaluation of a Robotic, Auto-Navigating Operating Microscope

Document Type

Article

Abstract

The unique challenges inherent to microneurosurgery demand that we stay on the forefront of new surgical technologies. Many believe the next major technological advance in neurosurgery will be the widespread application of image-guided robotics in the operating room. We evaluated a novel technology for image-guided robotic auto-navigation of the operating microscope in a prospectively enrolled cohort of patients. Twenty patients were prospectively enrolled for analysis. Data were collected on the extent of resection, operative time, estimated blood loss, time taken to set up the new software, and complications encountered. Software accuracy, reliability, and usefulness in the case were subjectively evaluated. The most commonly treated pathologies were cavernous malformation (n = 5), arteriovenous malformation (n = 4), and meningioma (n = 4). The time to set up the new software interface before the start of the operation was <60 seconds in all cases. Subjective evaluation in each case revealed the robotic interface to be accurate, reliable, and useful. The new technology was significantly more useful in deeper lesions. The addition of image-guided robotic auto-positioning features to the operating microscope has a great potential to advance the field of neurosurgery. This study is the first prospective evaluation of such a technology in a patient cohort. The results suggest that the newest robotic auto-positioning technology has the potential to improve the neurosurgeon's efficiency and efficacy, thereby positively impacting patient safety and surgical outcomes, especially in cases involving deep-seated lesions.

Publication Date

6-30-2016

Publication Title

Cureus

ISSN

2168-8184

Volume

8

Issue

6

First Page

e662

PubMed ID

27493844

Digital Object Identifier (DOI)

10.7759/cureus.662

Share

COinS