Surgical assessment of the insula. Part 1: Surgical anatomy and morphometric analysis of the transsylvian and transcortical approaches to the insula

Document Type

Article

Abstract

OBJECTIVE: Transcortical and transsylvian corridors have been previously described as the main surgical approaches to the insula, but there is insufficient evidence to support one approach versus the other. The authors performed a cadaveric comparative study regarding insular exposure, surgical window and freedom, between the transcortical and transsylvian approaches (with and without cutting superficial sylvian bridging veins). Surgical anatomy and skull surface reference points to the different insular regions are also described. METHODS: Sixteen cadaveric specimens were embalmed with a customized formula to enhance neurosurgical simulation. Two different blocks were defined in the study: first, transsylvian without (TS) and with the superficial sylvian bridging veins cut (TSVC) and transcortical (TC) approaches to the insula were simulated in all (16) specimens. Insular surface exposure, surgical window and surgical freedom were calculated for each procedure and related to the Berger-Sanai insular glioma classification (Zones I–IV) in 10 specimens. Second, the venous drainage pattern and anatomical landmarks considered critical for surgical planning were studied in all specimens. RESULTS: In the insular Zone I (anterior-superior), the TC approach provided the best insular exposure compared with both TS and TSVC. The surgical window obtained with the TC approach was also larger than that obtained with the TS. The TC approach provided 137% more surgical freedom than the TS approach. Only the TC corridor provided complete insular exposure. In Zone II (posterior-superior), results depended on the degree of opercular resection. Without resection of the precentral gyrus in the operculum, insula exposure, surgical windows and surgical freedom were equivalent. If the opercular cortex was resected, the insula exposure and surgical freedom obtained through the TC approach was greater to that of the other groups. In Zone III (posterior-inferior), the TC approach provided better surgical exposure than the TS, yet similar to the TSVC. The TC approach provided the best insular exposure, surgical window, and surgical freedom if components of Heschl’s gyrus were resected. In Zone IV (anterior-inferior), the TC corridor provided better exposure than both the TS and the TSVC. The surgical window was equivalent. Surgical freedom provided by the TC was greater than the TS approach. This zone was completely exposed only with the TC approach. A dominant anterior venous drainage was found in 87% of the specimens. In this group, 50% of the specimens had good alternative venous drainage. The sylvian fissure corresponded to the superior segment of the squamosal suture in 14 of 16 specimens. The foramen of Monro was 1.9 cm anterior and 4.42 cm superior to the external acoustic meatus. The M2 branch over the central sulcus of the insula became the precentral M4 (rolandic) artery in all specimens. CONCLUSIONS: Overall, the TC approach to the insula provided better insula exposure and surgical freedom compared with the TS and the TSVC. Cortical and subcortical mapping is critical during the TC approach to the posterior zones (II and III), as the facial motor and somatosensory functions (Zone II) and language areas (Zone III) may be involved. The evidence provided in this study may help the neurosurgeon when approaching insular gliomas to achieve a greater extent of tumor resection via an optimal exposure.

Publication Date

1-1-2016

Publication Title

Journal of Neurosurgery

ISSN

00223085

E-ISSN

19330693

Volume

124

Issue

2

First Page

469

Last Page

481

PubMed ID

26339854

Digital Object Identifier (DOI)

10.3171/2014.12.JNS142182

This document is currently not available here.

Share

COinS