Inhibition of pathological brain angiogenesis through systemic delivery of AAV vector expressing soluble FLT1

Document Type

Article

Abstract

The soluble vascular endothelial growth factor (VEGF) receptor 1 (sFLT1) has been tested in both animals and humans for anti-angiogenic therapies, for example, age-related macular degeneration. We hypothesized that adeno-associated viral vector (AAV)-mediated sFLT1 expression could be used to inhibit abnormal brain angiogenesis. We tested the anti-angiogenic effect of sFLT1 and the feasibility of using AAV serotype 9 to deliver sFLT1 through intravenous injection (IV) to the brain angiogenic region. AAVs were packaged in AAV serotypes 1 and 2 (stereotactic injection) and 9 (IV injection). Brain angiogenesis was induced in adult mice through stereotactic injection of AAV1-VEGF. AAV2-sFLT02 containing sFLT1 VEGF-binding domain (domain 2) was injected into the brain angiogenic region, and AAV9-sFLT1 was injected into the jugular vein at the time of or 4 weeks after AAV1-VEGF injection. We showed that AAV2-sFLT02 inhibited brain angiogenesis at both time points. IV injection of AAV9-sFLT1 inhibited angiogenesis only when the vector was injected 4 weeks after angiogenic induction. Neither lymphocyte infiltration nor neuron loss was observed in AAV9-sFLT1-treated mice. Our data show that systemically delivered AAV9-sFLT1 inhibits angiogenesis in the mouse brain, which could be utilized to treat brain angiogenic diseases such as brain arteriovenous malformation.

Publication Date

11-1-2015

Publication Title

Gene Therapy

ISSN

09697128

E-ISSN

14765462

Volume

22

Issue

11

First Page

893

Last Page

900

PubMed ID

26090874

Digital Object Identifier (DOI)

10.1038/gt.2015.57

This document is currently not available here.

Share

COinS