A predictive model to identify Parkinson disease from administrative claims data
Document Type
Article
Abstract
OBJECTIVE: To use administrative medical claims data to identify patients with incident Parkinson disease (PD) prior to diagnosis. METHODS: Using a population-based case-control study of incident PD in 2009 among Medicare beneficiaries aged 66-90 years (89,790 cases, 118,095 controls) and the elastic net algorithm, we developed a cross-validated model for predicting PD using only demographic data and 2004-2009 Medicare claims data. We then compared this model to more basic models containing only demographic data and diagnosis codes for constipation, taste/smell disturbance, and REM sleep behavior disorder, using each model's receiver operator characteristic area under the curve (AUC). RESULTS: We observed all established associations between PD and age, sex, race/ethnicity, tobacco smoking, and the above medical conditions. A model with those predictors had an AUC of only 0.670 (95% confidence interval [CI] 0.668-0.673). In contrast, the AUC for a predictive model with 536 diagnosis and procedure codes was 0.857 (95% CI 0.855-0.859). At the optimal cut point, sensitivity was 73.5% and specificity was 83.2%. CONCLUSIONS: Using only demographic data and selected diagnosis and procedure codes readily available in administrative claims data, it is possible to identify individuals with a high probability of eventually being diagnosed with PD.
Medical Subject Headings
Aged; Aged, 80 and over; Case-Control Studies; Female; Humans; Male; Medicare (statistics & numerical data); Olfaction Disorders (etiology); Parkinson Disease (complications, diagnosis, epidemiology); Predictive Value of Tests; ROC Curve; Retrospective Studies; Sleep Wake Disorders (etiology); United States (epidemiology)
Publication Date
10-3-2017
Publication Title
Neurology
E-ISSN
1526-632X
Volume
89
Issue
14
First Page
1448
Last Page
1456
PubMed ID
28864676
Digital Object Identifier (DOI)
10.1212/WNL.0000000000004536
Recommended Citation
Searles Nielsen, Susan; Warden, Mark N.; Camacho-Soto, Alejandra; Willis, Allison W.; Wright, Brenton A.; and Racette, Brad A., "A predictive model to identify Parkinson disease from administrative claims data" (2017). Neurology. 1096.
https://scholar.barrowneuro.org/neurology/1096