Craniovertebral junction fixation with transarticular screws: Biomechanical analysis of a novel technique

Document Type

Article

Abstract

Object. The authors compared the biomechanical stability resulting from the use of a new technique for occipitoatlantal motion segment fixation with an established method and assessed the additional stability provided by combining the two techniques. Methods. Specimens were loaded using nonconstraining pure moments while recording the three-dimensional angular movement at occiput (Oc)-C1 and C1-2. Specimens were tested intact and after destabilization and fixation as follows: 1) Oc-C1 transarticular screws plus C1-2 transarticular screws; 2) occipitocervical transarticular (OCTA) plate in which C1-2 transarticular screws attach to a loop from Oc to C-2; and (3) OCTA plate plus Oc-C1 transarticular screws. Occipitoatlantal transarticular screws reduced motion to well within the normal range. The OCTA loop and transarticular screws allowed a very small neutral zone, elastic zone, and range of motion during lateral bending and axial rotation. The transarticular screws, however, were less effective than the OCTA loop in resisting flexion and extension. Conclusions. Biomechanically, Oc-C1 transarticular screws performed well enough to be considered as an alternative for Oc-C1 fixation, especially when instability at C1-2 is minimal. Techniques for augmenting these screws posteriorly by using a wired bone graft buttress, as is currently undertaken with C1-2 transarticular screws, may be needed for optimal performance.

Keywords

Atlas, Axis, Biomechanical study, Craniocervical junction, Occipital condyle, Transarticular screw

Publication Date

3-1-2003

Publication Title

Journal of Neurosurgery

ISSN

00223085

Volume

98

Issue

2 SUPPL.

First Page

202

Last Page

209

PubMed ID

12650406

Digital Object Identifier (DOI)

10.3171/spi.2003.98.2.0202

This document is currently not available here.

Share

COinS