Biomechanics of a novel minimally invasive lumbar interspinous spacer: effects on kinematics, facet loads, and foramen height.
Document Type
Article
Abstract
OBJECTIVE: To study the alteration to normal biomechanics after insertion of a lumbar interspinous spacer (ISS) in vitro by nondestructive cadaveric flexibility testing. METHODS: Seven human cadaveric specimens were studied before and after ISS placement at L1-L2. Angular range of motion, lax zone, stiff zone, sagittal instantaneous axis of rotation (IAR), foraminal height, and facet loads were compared between conditions. Flexion, extension, lateral bending, and axial rotation were induced using pure moments (7.5 Nm maximum) while recording motion optoelectronically. The IAR was measured during loading with a 400 N compressive follower. Foraminal height changes were calculated using rigid body methods. Facet loads were assessed from surface strain and neural network analysis. RESULTS: After ISS insertion, range of motion and stiff zone during extension were significantly reduced (P < .01). Foraminal height was significantly reduced from flexion to extension in both normal and ISS-implanted conditions; there was significantly less reduction in foraminal height during extension with the ISS in place. The ISS reduced the mean facet load by 30% during flexion (P < .02) and 69% during extension (P < .015). The IAR after ISS implantation was less than 1 mm from the normal position (P > .18). CONCLUSION: The primary biomechanical effect of the ISS was reduced extension with associated reduced facet loads and smaller decrease in foraminal height. The ISS had little effect on sagittal IAR or on motion or facet loads in other directions.
Publication Date
1-1-2010
Publication Title
Neurosurgery
E-ISSN
15244040
Volume
66
Issue
3 Suppl Operative
PubMed ID
20173562
Recommended Citation
Lazaro, Bruno C.R.; Brasiliense, Leonardo B.C.; Sawa, Anna G.U.; Reyes, Phillip M.; Theodore, Nicholas; Sonntag, Volker K.H.; and Crawford, Neil R., "Biomechanics of a novel minimally invasive lumbar interspinous spacer: effects on kinematics, facet loads, and foramen height." (2010). Translational Neuroscience. 784.
https://scholar.barrowneuro.org/neurobiology/784