De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells
Document Type
Article
Abstract
It has been a controversial issue as to how many DNA cytosine methyltransferase mammalian cells have and whether de novo methylation and maintenance methylation activities are encoded by a single gene or two different genes. To address these questions, we have generated a null mutation of the only known mammalian DNA methyltransferase gene through homologous recombination in mouse embryonic stem cells and found that the development of the homozygous embryos is arrested prior to the 8-somite stage. Surprisingly, the null mutant embryonic stem cells are viable and contain low but stable levels of methyl cytosine and methyltransferase activity, suggesting the existence of a second DNA methyltransferase in mammalian cells. Further studies indicate that de novo methylation activity is not impaired by the mutation as integrated provirus DNA in MoMuLV-infected homozygous embryonic stem cells become methylated at a similar rate as in wild-type cells. Differentiation of mutant cells results in further reduction of methyl cytosine levels, consistent with the de novo methylation activity being down regulated in differentiated cells. These results provide the first evidence that an independently encoded DNA methyltransferase is present in mammalian cells which is capable of de novo methylating cellular and viral DNA in vivo.
Keywords
De novo methylation, DNA cytosine methyltransferase, Embryonic stem cells, Gene targeting, Genomic imprinting, X-inactivation
Publication Date
11-15-1996
Publication Title
Development
ISSN
09501991
Volume
122
Issue
10
First Page
3195
Last Page
3205
PubMed ID
8898232
Recommended Citation
Lei, Hong; Oh, Suk P.; Okano, Masaki; Jüttermann, Ruth; Goss, Kendrick A.; Jaenisch, Rudolf; and Li, En, "De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells" (1996). Translational Neuroscience. 720.
https://scholar.barrowneuro.org/neurobiology/720