Identification Of Novel Splice Variants And Exons Of Human Endothelial Cell-Specific Chemotaxic Regulator (Ecscr) By Bioinformatics Analysis

Department

neurobiology

Document Type

Article

Abstract

Recent discovery of biological function of endothelial cell-specific chemotaxic regulator (ECSCR), previously known as endothelial cell-specific molecule 2 (ECSM2), in modulating endothelial cell migration, apoptosis, and angiogenesis, has made it an attractive molecule in vascular research. Thus, identification of splice variants of ECSCR could provide new strategies for better understanding its roles in health and disease. In this study, we performed a series of blast searches on the human EST database with known ECSCR cDNA sequence (Variant 1), and identified additional three splice variants (Variants 2-4). When examining the ECSCR gene in the human genome assemblies, we found a large unknown region between Exons 9 and 11. By PCR amplification and sequencing, we partially mapped Exon 10 within this previously unknown region of the ECSCR gene. Taken together, in addition to previously reported human ECSCR, we identified three novel full-length splice variants potentially encoding different protein isoforms. We further defined a total of twelve exons and nearly all exon-intron boundaries of the gene, of which only eight are annotated in current public databases. Our work provides new information on gene structure and alternative splicing of the human ECSCR, which may imply its functional complexity. This undoubtedly opens new opportunities for future investigation of the biological and pathological significance of these ECSCR splice variants. © 2012 Elsevier Ltd. All rights reserved.

Publication Date

12-1-2012

Publication Title

Computational Biology and Chemistry

ISSN

14769271

Volume

41

First Page

41

Last Page

50

Digital Object Identifier (DOI)

10.1016/j.compbiolchem.2012.10.003

This document is currently not available here.

Share

COinS