Sesamin attenuates behavioral, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats

Document Type

Article

Abstract

Restoration of blood flow to an ischemic brain region is associated with generation of reactive oxygen species (ROS) with consequent reperfusion injury. ROS cause lipid peroxidation, protein oxidation, and DNA damage, all of which are deleterious to cells. So diminishing the production of free radicals and scavenging them may be a successful therapeutic strategy for the protection of brain tissue in cerebral stroke. The present study investigated the neuroprotective effect of sesamin (Sn) to reduce brain injury after middle cerebral artery occlusion (MCAO). The middle cerebral artery (MCA) of adult male Wistar rat was occluded for 2 h and reperfused for 22 h. Sesamin is the most abundant lignan in sesame seed oil is a potent antioxidant. Sesamin (30 mg/kg) was given orally twice, 30 min before the onset of ischemia and 12 h after reperfusion. The initial investigations revealed that sesamin reduced the neurological deficits in terms of behavior and reduced the level of thiobarbituric acid reactive species (TBARS), and protein carbonyl (PC) in the different areas of the brain when compared with the MCAO group. A significantly depleted level of glutathione and its dependent enzymes (glutathione peroxidase [GPx] and glutathione reductase [GR]) in MCAO group were protected significantly in MCAO group treated with sesamin. The present study suggests that sesamin may be able to attenuate the ischemic cell death and plays a crucial role as a neuroprotectant in regulating levels of reactive oxygen species in the rat brain. Thus, sesamin may be a potential compound in stroke therapy. © 2009 Elsevier Ireland Ltd. All rights reserved.

Keywords

Middle cerebral artery occlusion, Neuroprotection, Oxidative stress, Sesamin, Stroke

Publication Date

1-5-2010

Publication Title

Chemico-Biological Interactions

ISSN

00092797

Volume

183

Issue

1

First Page

255

Last Page

263

PubMed ID

19835851

Digital Object Identifier (DOI)

10.1016/j.cbi.2009.10.003

This document is currently not available here.

Share

COinS