Department

neurobiology

Document Type

Article

Abstract

Structure-based drug design can potentially accelerate the development of new therapeutics. In this study, a cocrystal structure of the acetylcholine binding protein (AChBP) from Capitella teleta (Ct) in complex with a cyclopropane-containing selective α4β2-nicotinic acetylcholine receptor (nAChR) partial agonist (compound 5) was acquired. The structural determinants required for ligand binding obtained from this AChBP X-ray structure were used to refine a previous model of the human α4β2- nAChR, thus possibly providing a better understanding of the structure of the human receptor. To validate the potential application of the structure of the Ct-AChBP in the engineering of new α4β2-nAChR ligands, homology modeling methods, combined with in silico ADME calculations, were used to design analogues of compound 5. The most promising compound, 12, exhibited an improved metabolic stability in comparison to the parent compound 5 while retaining favorable pharmacological parameters together with appropriate behavioral end points in the rodent studies. © 2012 American Chemical Society.

Publication Date

9-27-2012

Publication Title

Journal of Medicinal Chemistry

ISSN

00222623

Volume

55

Issue

18

First Page

8028

Last Page

8037

Digital Object Identifier (DOI)

10.1021/jm3008739

Share

COinS