MATR3 P154S knock-in mice do not exhibit motor, muscle or neuropathologic features of ALS

Document Type

Article

Abstract

Matrin 3 is a nuclear matrix protein that has many roles in RNA processing including splicing and transport of mRNA. Many missense mutations in the Matrin 3 gene (MATR3) have been linked to familial forms of amyotrophic lateral sclerosis (ALS) and distal myopathy. However, the exact role of MATR3 mutations in ALS and myopathy pathogenesis is not understood. To demonstrate a role of MATR3 mutations in vivo, we generated a novel CRISPR/Cas9 mediated knock-in mouse model harboring the MATR3 P154S mutation expressed under the control of the endogenous promoter. The P154S variant of the MATR3 gene has been linked to familial forms of ALS. Heterozygous and homozygous MATR3 P154S knock-in mice did not develop progressive motor deficits compared to wild-type mice. In addition, ALS-like pathology did not develop in nervous or muscle tissue in either heterozygous or homozygous mice. Our results suggest that the MATR3 P154S variant is not sufficient to produce ALS-like pathology in vivo.

Keywords

ALS, MATR3 P154S mutation, Matrin 3, Mouse model, Neuropathology

Medical Subject Headings

Animals; Mice; Amyotrophic Lateral Sclerosis (metabolism); Muscles (metabolism); Muscular Diseases (genetics); Mutation; Mutation, Missense; Nuclear Matrix-Associated Proteins (genetics, metabolism)

Publication Date

2-19-2023

Publication Title

Biochemical and biophysical research communications

E-ISSN

1090-2104

Volume

645

First Page

164

Last Page

172

PubMed ID

36689813

Digital Object Identifier (DOI)

10.1016/j.bbrc.2023.01.032

Share

COinS