Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1-Ch6)

Document Type

Article

Abstract

Monoclonal antibodies to choline acetyltransferase and a histochemical method for the concurrent demonstration of acetylcholinesterase and horseradish peroxidase were used to investigate the organization of ascending cholinergic pathways in the central nervous system of the rat. The cortical mantle, the amygdaloid complex, the hippocampal formation, the olfactory bulb and the thalamic nuclei receive their cholinergic innervation principally, from cholinergic projection neurons of the basal forebrain and upper brainstem. On the basis of connectivity patterns, we subdivided these cholinergic neurons into six major sectors. The Chl and Ch2 sectors are contained within the medial septal nucleus and the vertical limb nucleus of the diagonal band, respectively. They provide the major cholinergic projections of the hippocampus. The Ch3 sector is contained mostly within the lateral portion of the horizontal limb nucleus of the diagonal band and provides the major cholinergic innervation to the olfactory bulb. The Ch4 sector includes cholinergic neurons in the nucleus basalis, and also within parts of the diagonal band nuclei. Neurons of the Ch4 sector provide the major cholinergic innervation of the cortical mantle and the amygdala. The Ch5-Ch6 sectors are contained mostly within the pedunculopontine nucleus of the pontomesencephalic reticular formation (Ch5) and within the laterodorsal tegmental gray of the periventricular area (Ch6). These sectors provide the major cholinergic innervation of the thalamus. The Ch5-Ch6 neurons also provide a minor component of the corticopetal cholinergic innervation. These central cholinergic pathways have been implicated in a variety of behaviors and especially in memory function. It appears that the age-related changes of memory function as well as some of the behavioral disturbances seen in the dementia of Alzheimer's Disease may be related to pathological alterations along central cholinergic pathways. © 1983.

Publication Date

1-1-1983

Publication Title

Neuroscience

ISSN

03064522

Volume

10

Issue

4

First Page

1185

Last Page

1201

PubMed ID

6320048

Digital Object Identifier (DOI)

10.1016/0306-4522(83)90108-2

Share

COinS