PNJ scaffolds promote microenvironmental regulation of glioblastoma stem-like cell enrichment and radioresistance
Document Type
Article
Abstract
Glioblastoma (GBM) brain tumors contain a subpopulation of self-renewing multipotent Glioblastoma stem-like cells (GSCs) that are believed to drive the near inevitable recurrence of GBM. We previously engineered temperature responsive scaffolds based on the polymer poly(N-isopropylacrylamide-co-Jeffamine M-1000 acrylamide) (PNJ) for the purpose of enriching GSCs in vitro from patient-derived samples. Here, we used PNJ scaffolds to study microenvironmental regulation of self-renewal and radiation response in patient-derived GSCs representing classical and proneural subtypes. GSC self-renewal was regulated by the composition of PNJ scaffolds and varied with cell type. PNJ scaffolds protected against radiation-induced cell death, particularly in conditions that also promoted GSC self-renewal. Additionally, cells cultured in PNJ scaffolds exhibited increased expression of the transcription factor HIF2α, which was not observed in neurosphere culture, providing a potential mechanistic basis for differences in radio-resistance. Differences in PNJ regulation of HIF2α in irradiated and untreated conditions also offered evidence of stem plasticity. These data show PNJ scaffolds provide a unique biomaterial for evaluating dynamic microenvironmental regulation of GSC self-renewal, radioresistance, and stem plasticity.
Publication Date
2-1-2022
Publication Title
Biomaterials science
E-ISSN
20474849
Volume
10
Issue
3
First Page
819
Last Page
833
PubMed ID
34994746
Digital Object Identifier (DOI)
10.1039/d0bm01169j
Recommended Citation
Heffernan, John M.; McNamara, James B.; Vernon, Brent L.; Mehta, Shwetal; and Sirianni, Rachael W., "PNJ scaffolds promote microenvironmental regulation of glioblastoma stem-like cell enrichment and radioresistance" (2022). Translational Neuroscience. 1596.
https://scholar.barrowneuro.org/neurobiology/1596