α-synuclein aggregates induce c-Abl activation and dopaminergic neuronal loss by a feed-forward redox stress mechanism

Document Type

Article

Abstract

Oxidative stress and α-synuclein aggregation both drive neurodegeneration in Parkinson's disease, and the protein kinase c-Abl provides a potential amplifying link between these pathogenic factors. Suppressing interactions between these factors may thus be a viable therapeutic approach for this disorder. To evaluate this possibility, pre-formed α-synuclein fibrils (PFFs) were used to induce α-synuclein aggregation in neuronal cultures. Exposure to PFFs induced oxidative stress and c-Abl activation in wild-type neurons. By contrast, α-synuclein - deficient neurons, which cannot form α-synuclein aggregates, failed to exhibit either oxidative stress or c-Abl activation. N-acetyl cysteine, a thiol repletion agent that supports neuronal glutathione metabolism, suppressed the PFF - induced redox stress and c-Abl activation in the wild-type neurons, and likewise suppressed α-synuclein aggregation. Parallel findings were observed in mouse brain: PFF-induced α-synuclein aggregation in the substantia nigra was associated with redox stress, c-Abl activation, and dopaminergic neuronal loss, along with microglial activation and motor impairment, all of which were attenuated with oral N-acetyl cysteine. Similar results were obtained using AAV-mediated α-synuclein overexpression as an alternative means of driving α-synuclein aggregation in vivo. These findings show that α-synuclein aggregates induce c-Abl activation by a redox stress mechanism. c-Abl activation in turn promotes α-synuclein aggregation, in a feed-forward interaction. The capacity of N-acetyl cysteine to interrupt this interaction adds mechanistic support its consideration as a therapeutic in Parkinson's disease.

Keywords

Excitatory amino acid transporter 3, Gene-Environment interaction, Glutathione, Parkinson's disease, SLC1A1

Publication Date

7-1-2021

Publication Title

Progress in Neurobiology

ISSN

03010082

E-ISSN

18735118

Volume

202

PubMed ID

33951536

Digital Object Identifier (DOI)

10.1016/j.pneurobio.2021.102070

Share

COinS