Optimized, unequal pulse spacing in multiple echo sequences improves refocusing in magnetic resonance
Document Type
Article
Abstract
A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T2 -weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications. © 2009 American Institute of Physics.
Publication Date
12-14-2009
Publication Title
Journal of Chemical Physics
ISSN
00219606
Volume
131
Issue
20
PubMed ID
19947697
Digital Object Identifier (DOI)
10.1063/1.3263196
Recommended Citation
Jenista, Elizabeth R.; Stokes, Ashley M.; Branca, Rosa Tamara; and Warren, Warren S., "Optimized, unequal pulse spacing in multiple echo sequences improves refocusing in magnetic resonance" (2009). Translational Neuroscience. 1194.
https://scholar.barrowneuro.org/neurobiology/1194