Biomechanical Evaluation Of Cervicothoracic Junction Fusion Constructs
Department
neurobiology
Document Type
Article
Abstract
Objective: We studied the effect of different cervicothoracic construct design variables on biomechanical stability in vitro. Methods: Six fresh-frozen human cadaveric spines (C5–T4) were used. After intact analysis, each specimen was destabilized and reconstructed, with all groups having 4.0-mm pedicle screws placed at T1–T3. The 2 hook-rod constructs included interlaminar hooks at C6 and C7, with either 3.5-mm or 4.0-mm rods (C6–T3). The 2 screw-rod constructs tested included lateral mass screws at C6 and C7, with either 3.5-mm or 4.0-mm rods (C6–T3). The 2 screw-connector-rod constructs tested included lateral mass screws at C6 and C7, with either 3.5-mm or 4.0-mm rods; 1 rod spanned C6-C7 with a connector to a second rod of the same size spanning T1–T3. Global (C6–T3) and intervertebral (C6-C7, C7-T1, T1-T2, and T2-T3) ranges of motion were compared for each construct. Results: In terms of global (C6–T3) stability, 3.5-mm versus 4.0-mm rod constructs were not significantly different, regardless of whether the construct was hook-rod, screw-rod, or screw-connector-rod. The hook-rod constructs provided less stability compared with the screw-rod and screw-connector-rod constructs in lateral bending (P < 0.04) and axial rotation (P < 0.001). The screw-rod constructs demonstrated a similar range of motion to that of the screw-connector-rod constructs, except for significantly less axial rotation at the C6-C7 level with 3.5-mm rods (P = 0.04). Conclusions: We found that the rod diameter of a construct does not appear to significantly influence the biomechanical stability of subaxial constructs. The screw-rod construct resulted in certain biomechanical advantages compared with the screw-connector-rod construct, and both were significantly superior to the hook-rod construct.
Publication Date
4-1-2019
Publication Title
World Neurosurgery
ISSN
18788750
Volume
124
First Page
e139
Last Page
e146
Digital Object Identifier (DOI)
10.1016/j.wneu.2018.12.040
Recommended Citation
Godzik, Jakub; Dalton, Jonathan F.; Martinez-del-Campo, Eduardo; Newcomb, Anna G.U.S.; Dominguez, Felix; Reyes, Phillip M.; Theodore, Nicholas; Kelly, Brian P.; and Crawford, Neil R., "Biomechanical Evaluation Of Cervicothoracic Junction Fusion Constructs" (2019). Translational Neuroscience. 108.
https://scholar.barrowneuro.org/neurobiology/108