Surgeon and staff radiation exposure in minimally invasive spinal surgery: prospective series using a personal dosimeter.

Department

Neurosurgery

Document Type

Article

Abstract

OBJECTIVE: The level of radiation awareness by surgeons and residents in spinal surgery does not match the ubiquity of fluoroscopy in operating rooms in the United States. The present method of monitoring radiation exposure may contribute to the current deficiency in radiation awareness. Current dosimeters involve a considerable lag from the time that the surgical team is exposed to radiation to the time that they are provided with that exposure data. The objective of the current study was to assess the feasibility of monitoring radiation exposure in operating room personnel during lateral transpsoas lumbar interbody fusion (LLIF) and minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) procedures by using a wearable personal device with real-time feedback.

METHODS: Operating room staff participating in minimally invasive surgical procedures under a single surgeon during a 6-month period were prospectively enrolled in this study. All radiation dose exposures were recorded for each member of the surgical team (surgeon, assistant surgeon, scrub nurse, and circulating nurse) using a personal dosimeter (DoseAware). Radiation doses were recorded in microsieverts (μSv). Comparisons between groups were made using ANOVA with the Tukey post hoc test and Student t-test.

RESULTS: Thirty-nine patients underwent interbody fusions: 25 underwent LLIF procedures (14 LLIF alone, 11 LLIF with percutaneous screw placement [PSP]) and 14 underwent MI-TLIF. For each operative scenario per spinal level, the surgeon experienced significantly higher (p < 0.035) average radiation exposure (LLIF: 167.9 μSv, LLIF+PSP: 424.2 μSv, MI-TLIF: 397.9 μSv) than other members of the team, followed by the assistant surgeon (LLIF: 149.7 μSv, LLIF+PSP: 242.3 μSv, MI-TLIF: 274.9 μSv). The scrub nurse (LLIF: 15.4 μSv, LLIF+PSP: 125.7 μSv, MI-TLIF: 183.0 μSv) and circulating nurse (LLIF: 1.2 μSv, LLIF+PSP: 9.2 μSv, MI-TLIF: 102.3 μSv) experienced significantly lower exposures. Radiation exposure was not correlated with the patient's body mass index (p ≥ 0.233); however, it was positively correlated with increasing patient age (p ≤ 0.004).

CONCLUSIONS: Real-time monitoring of radiation exposure is currently feasible and shortens the time between exposure and the availability of information regarding that exposure. A shortened feedback loop that offers more reliable and immediate data would conceivably raise the level of concern for radiation exposure in spinal surgeries and could alter patterns of behavior, leading to decreased exposures. Further studies are ongoing to determine the effect of real-time dosimetry in spinal surgery.

Publication Date

2-7-2020

Publication Title

Journal of neurosurgery. Spine

ISSN

1547-5646

First Page

1

Last Page

7

PubMed ID

32032959

Digital Object Identifier (DOI)

10.3171/2019.11.SPINE19448

This document is currently not available here.

Share

COinS