A Novel Nicotinic Acetylcholine Receptor Subtype In Basal Forebrain Cholinergic Neurons With High Sensitivity To Amyloid Peptides

Department

neurobiology

Document Type

Article

Abstract

Nicotinic acetylcholine receptors (nAChRs) containing α7 subunits are thought to assemble as homomers. α7-nAChR function has been implicated in learning and memory, and alterations of α7-nAChR have been found in patients with Alzheimer's disease (AD). Here we report findings consistent with a novel, naturally occurring nAChR subtype in rodent, basal forebrain cholinergic neurons. In these cells, α7 subunits are coexpressed, colocalize, and coassemble with β2 subunit(s). Compared with homomeric α7-nAChRs from ventral tegmental area neurons, functional, presumably heteromeric α7β;2-nAChRs on cholinergic neurons freshly dissociated from medial septum/diagonal band (MS/DB) exhibit relatively slow kinetics of whole-cell current responses to nicotinic agonists and are more sensitive to the β;2 subunit-containing nAChR-selective antagonist, dihydro-β- erythroidine (DHβE). Interestingly, presumed, heteromeric α7β2-nAChRs are highly sensitive to functional inhibition by pathologically relevant concentrations of oligomeric, but not monomeric or fibrillar, forms of amyloid β1-42 (Aβ1-42). Slow whole-cell current kinetics, sensitivity to DHβE, and specific antagonism by oligomeric Aβ1-42 also are characteristics of heteromeric α7β2-nAChRs, but not of homomeric α7-nAChRs, heterologously expressed in Xenopus oocytes. Moreover, choline-induced currents have faster kinetics and less sensitivity to Aβ when elicited from MS/DB neurons derived from nAChR β2 subunit knock-out mice rather than from wild-type mice. The presence of novel, functional, heteromeric α7β2-nAChRs on basal forebrain cholinergic neurons and their high sensitivity to blockade by low concentrations of oligomeric Aβ1-42 suggests possible mechanisms for deficits in cholinergic signaling that could occur early in the etiopathogenesis of AD and might be targeted by disease therapies. Copyright © 2009 Society for Neuroscience.

Publication Date

1-28-2009

Publication Title

Journal of Neuroscience

ISSN

02706474

Volume

29

Issue

4

First Page

918

Last Page

929

Digital Object Identifier (DOI)

10.1523/JNEUROSCI.3952-08.2009

This document is currently not available here.

Share

COinS