Clinical outcomes following awake and asleep deep brain stimulation for Parkinson disease

Tsinsue Chen, St. Joseph's Hospital and Medical Center
Zaman Mirzadeh, St. Joseph's Hospital and Medical Center
Kristina M. Chapple, St. Joseph's Hospital and Medical Center
Margaret Lambert, St. Joseph's Hospital and Medical Center
Holly A. Shill, St. Joseph's Hospital and Medical Center
Guillermo Moguel-Cobos, St. Joseph's Hospital and Medical Center
Alexander I. Tröster, Barrow Neurological Institute
Rohit Dhall, University of Arkansas for Medical Sciences
Francisco A. Ponce, St. Joseph's Hospital and Medical Center

Abstract

OBJECTIVE Recent studies have shown similar clinical outcomes between Parkinson disease (PD) patients treated with deep brain stimulation (DBS) under general anesthesia without microelectrode recording (MER), so-called “asleep” DBS, and historical cohorts undergoing “awake” DBS with MER guidance. However, few studies include internal controls. This study aims to compare clinical outcomes after globus pallidus internus (GPi) and subthalamic nucleus (STN) DBS using awake and asleep techniques at a single institution. METHODS PD patients undergoing awake or asleep bilateral GPi or STN DBS were prospectively monitored. The primary outcome measure was stimulation-induced change in motor function off medication 6 months postoperatively, measured using the Unified Parkinson’s Disease Rating Scale part III (UPDRS-III). Secondary outcomes included change in quality of life, measured by the 39-item Parkinson’s Disease Questionnaire (PDQ-39), change in levodopa equivalent daily dosage (LEDD), stereotactic accuracy, stimulation parameters, and adverse events. RESULTS Six-month outcome data were available for 133 patients treated over 45 months (78 GPi [16 awake, 62 asleep] and 55 STN [14 awake, 41 asleep]). UPDRS-III score improvement with stimulation did not differ between awake and asleep groups for GPi (awake, 20.8 points [38.5%]; asleep, 18.8 points [37.5%]; p = 0.45) or STN (awake, 21.6 points [40.3%]; asleep, 26.1 points [48.8%]; p = 0.20) targets. The percentage improvement in PDQ-39 and LEDD was similar for awake and asleep groups for both GPi (p = 0.80 and p = 0.54, respectively) and STN cohorts (p = 0.85 and p = 0.49, respectively). CONCLUSIONS In PD patients, bilateral GPi and STN DBS using the asleep method resulted in motor, quality-of-life, and medication reduction outcomes that were comparable to those of the awake method.