Title

PICK1-mediated GluR2 endocytosis contributes to cellular injury after neuronal trauma

Document Type

Article

Abstract

Constitutive and activity-dependent regulation of the AMPA receptor GluR2 content is recognized as an important mediator of both neuronal plasticity and vulnerability to excitotoxic neuron death. In the latter case, inclusion of GluR2 protects against glutamate excitotoxicity in CNS disease by lowering receptor single-channel conductance and preventing deleterious calcium influx. We investigated the hypothesis that aberrations in GluR2 trafficking after in vitro and in vivo cerebral trauma contribute to excitotoxicity and associated calcium-dependent cell death processes. First, in an in vitro model of traumatic brain injury (TBI), we observed PICK1 and N-methyl-D-aspartic acid (NMDA) receptor-dependent phosphorylation and internalization of GluR2. The contributing cell signaling mechanisms involved enhanced binding between PKCα (the kinase that phosphorylates GluR2) and PICK1 (its PDZ-binding partner), and a novel protein interaction between PKCα and the NMDA receptor scaffolding protein PSD-95. Functionally, these phenomena enhanced single cell AMPAR mEPSCs and protracted calcium extrusion. In vivo TBI similarly promoted GluR2 phosphorylation and internalization, with enhanced expression of calcium-permeable AMPARs in the injured hippocampus. Peptide-mediated perturbation of the PKCα/PICK1 protein interaction after trauma preserved surface GluR2 expression, attenuated AMPAR-mediated toxicity, and occluded the sensitivity of neuronal physiology to calcium-permeable AMPAR antagonists. These findings suggest that experimental TBI promotes the expression of injurious GluR2-lacking AMPARs, thereby enhancing cellular vulnerability to secondary excitotoxicity.

Publication Date

8-3-2009

Publication Title

Cell Death and Differentiation

ISSN

13509047

E-ISSN

14765403

Volume

16

Issue

12

First Page

1665

Last Page

1680

PubMed ID

19644508

Digital Object Identifier (DOI)

10.1038/cdd.2009.106

https://doi.org/10.1038/cdd.2009.106

Share

COinS