Department

neurobiology

Document Type

Article

Abstract

The basic helix-loop-helix (bHLH) transcription factor OLIG2 is a master regulator of oligodendroglial fate decisions and tumorigenic competence of glioma stem-like cells (GSCs). However, the molecular mechanisms underlying dysregulation of OLIG2 function during gliomagenesis remains poorly understood. Here, we show that OLIG2 modulates growth factor signaling in two distinct populations of GSCs, characterized by expression of either the epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor alpha (PDGFRα). Biochemical analyses of OLIG2 function in normal and malignant neural progenitors reveal a positive feedforward loop between OLIG2 and EGFR to sustain co-expression. Furthermore, loss of OLIG2 function results in mesenchymal transformation in PDGFRαHIGH GSCs, a phenomenon that appears to be circumscribed in EGFRHIGH GSCs. Exploitation of OLIG2′s dual and antithetical, pro-mitotic (EGFR-driven), and lineage-specifying (PDGFRα-driven) functions by glioma cells appears to be critical for sustaining growth factor signaling and GSC molecular subtype.

Publication Date

9-13-2016

Publication Title

Cell Reports

ISSN

22111247

Volume

16

Issue

11

First Page

2838

Last Page

2845

Digital Object Identifier (DOI)

10.1016/j.celrep.2016.08.040

Share

COinS