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Optical-sectioning microscopy of protoporphyrin IX
fluorescence in human gliomas: standardization
and quantitative comparison with histology

Linpeng Wei,a Ye Chen,a Chengbo Yin,a Sabine Borwege,b Nader Sanai,b and Jonathan T. C. Liua,*
aUniversity of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
bBarrow Neurological Institute, St. Joseph’s Hospital, Phoenix, Arizona, United States

Abstract. Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many
tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated
with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been dem-
onstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved
progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all
gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes
that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning
microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable
via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-reso-
lution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to
ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging
studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images
from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically
processed tissue sections. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.4.046005]
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1 Introduction
Gliomas are the most common primary malignant brain tumor in
adults and are considered one of the deadliest cancers. Patients
with glioblastoma [World Health Organization (WHO) Grade IV
glioma] have a median survival of 14 months and a 2-year sur-
vival rate of 26%, even when optimal treatment is provided.1,2

Reducing the tumor burden through surgical resection remains
the first step in effective glioma management, where studies
have shown that more extensive surgical resection is associated
with better prognosis.2–9 Unfortunately, the gross-total resection
(GTR) of gliomas [complete resection as assessed by postoper-
ative magnetic resonance imaging (MRI)] is challenging due to
the diffuse distribution of glioma cells in which the tumor margins
are indistinguishable from the surrounding normal brain under
visual inspection.10 Furthermore, while a number of modern intra-
operative techniques (e.g., intraoperative ultrasonography and
MRI) have been developed to guide glioma resections, the
reported rates of GTR of gliomas remains low, especially for low-
grade gliomas (LGG). A major reason is that for most wide-field
imaging techniques, the intensity of each low-resolution pixel
represents an average signal from a large number of cells, result-
ing in a low sensitivity to detecting sparse tumor-cell populations
in LGGs, as well as at the diffuse margins of all gliomas. Over and
above the goal of achieving GTR (based on MRI), there is a need
to visualize and quantify tumor burden beyond the radiographic
margins as it is well known that glioma cells infiltrate beyond the
regions of MRI contrast-enhancement.11–14

In recent years, numerous reports have detailed the benefits
of fluorescence image-guided surgery for the resection of high-
grade gliomas (HGGs) in patients who have been administered
5-aminolevulinic acid (5-ALA), a prodrug that induces the pro-
duction of protoporphyrin IX (PpIX) as a fluorescent contrast
agent.15–27 PpIX is an endogenous fluorescent substrate in the
heme-synthesis pathway and has been shown to preferentially
accumulate in glioma cells due to metabolic dysregulation.28

PpIX emits red fluorescence (λem ¼ 600 to 700 nm) when
excited with violet light (λex ¼ 400 to 410 nm).29,30 In glioma
patients, this accumulation of PpIX is amplified by delivering an
oral dose of 5-ALA several hours prior to surgery.16 A landmark
randomized phase III clinical trial in Europe showed that PpIX-
guided surgeries resulted in more complete tumor resections
(GTR of 65% versus 36% for the control group), as well as
improved patient outcomes (6-month progression free survival
rate of 41% versus 21% for the control group).17 Currently,
5-ALA is approved for neurosurgical use in Europe, Canada,
and Japan, and is being used in a number of clinical studies in
the United States under Investigational New Drug-approval by
the Food and Drug Administration.

In spite of its success for guiding the resection of HGGs,
PpIX-guided surgery remains less effective for LGGs mainly
due to the aforementioned limited resolution and sensitivity of
current low-resolution surgical imaging systems. However, in a
pilot study in 2011, Sanai et al. demonstrated that an intraoper-
ative confocal microscope, with the ability to resolve subcellular
features, could visualize the sparse subcellular expression of
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PpIX in LGG patients treated with 5-ALA.10 Based on these
promising results, our team is developing a handheld video-
rate optical-sectioning microscope that is optimized to visualize
and quantify subcellular PpIX expression,31 the characteristics
of which (e.g., intensity, density, etc.) are believed to be
associated with tumor burden and proliferative index.32–34

Ultimately, our objective is to provide an intraoperative imaging
device that can provide neurosurgeons with real-time histopa-
thological information and quantitative metrics to optimize the
extent of resection for improving patient outcomes.

Our device utilizes a dual-axis confocal (DAC) architecture
in which the illumination and collection beam paths are spatially
separated (Fig. 1). The advantages of the DAC architecture over
conventional single-axis confocal microscopes have been dis-
cussed previously.35–42 Preliminary ex vivo studies with a proto-
type DAC microscope have demonstrated that DAC microscopy
provides high-contrast images of subcellular PpIX expression in
unsectioned human glioma tissues, with qualitative agreement to
fluorescence microscopy of slide-mounted histology sections
of the same tissue.43 We have also developed a line-scanned
dual-axis confocal (LS-DAC) microscope system that operates
at a higher frame rate (15 to 30 fps) to reduce motion artifacts
(blurring) during handheld clinical use.44–46

In the study described here, our aim was to further improve
the clinical translational potential of LS-DAC microscopy, as

well as other optical-sectioning microscopy approaches (e.g.,
single-axis confocal microscopy,47–49 nonlinear microscopy,50

structured-illumination microscopy,51,52 etc.) for intraoperative
guidance of glioma resections based on PpIX fluorescence.
In particular, two advances have been made: (1) a fluorescent
bead phantom has been developed, along with an imaging
protocol, to optimize the alignment and performance of optical-
sectioning microscopes. This will ensure the acquisition of
quantitatively reproducible images of PpIX-expressing brain tis-
sues with the potential to standardize numerous devices in future
multisite clinical studies. (2) Completion of a pilot clinical study
(ex vivo tissues) to demonstrate that the use of our calibration
phantom allows for the acquisition of LS-DAC microscopy data
that quantitatively correlate with fluorescence histology data,
thus further supporting the potential use of LS-DAC microscopy
as a real-time, minimally invasive alternative to conventional
gold-standard histopathology.

2 Methods

2.1 Line-Scanned Dual-Axis Confocal Microscope

The microscope system (Fig. 1) used in this study is a modified
version of a tabletop LS-DAC microscope system described
previously.44,46 In brief, a single-mode fiber-coupled 405-nm
diode laser (OBIS-405, Coherent Inc., Santa Clara, California)
is collimated and focused into the sample with unity magnifi-
cation (numerical aperture, NA ∼ 0.12). A planoconvex cylin-
drical lens (f ¼ 50 mm, Optosigma, Santa Ana, California) is
inserted in the collimated region of the illumination path to
intentionally create a large degree of astigmatism, resulting in
a focal line that is 500-μm long and 1.4-μm wide [full width
at half maximum (FWHM)]. A one-dimensional galvanometric
scanning mirror (6210H, Cambridge Technology, Bedford,
Massachusetts) scans the focal line laterally (along the x-axis)
to create an image that is parallel to the tissue surface (en face).
The sample rests on a solid immersion lens (SIL, n ¼ 1.45) that
is mounted on a linear translation stage. The hemispherical SIL
performs index matching of the illumination and collection
beams as they obliquely propagate from air into the sample.
The SIL also acts as a lens that increases the effective NA of
the illumination beam from 0.12 to 0.17 (a factor of n).35

Fluorescence photons generated at the focal line of the illumi-
nation beam are imaged by the collection optics, which are ori-
ented off-axis at a half-crossing angle of 30.0 deg with respect to
the illumination axis. The collection path images the focal line
onto an sCMOS detector (Hamamatsu ORCA Flash 4.0 v2) with
5× magnification via a pair of lenses (fL1 ¼ 20 mm; fL2 ¼
100 mm). A 600-nm long-pass fluorescence filter (Semrock
BLP01-594R-25) is placed in the beam path to filter out the
excitation photons (λ ¼ 405 nm). Raw images were collected
via a camera link frame grabber (Firebird 1xCLD, Active
Silicon, United Kingdom) at 1000 raw exposures per second
(1 ms per exposure). A custom LabVIEW (National Instru-
ments) program was used to crop out and bin the central
three lines of each camera frame (corresponding to the image
of the focal line) to create a digital confocal slit (19.5 μm in
width, corresponding to ∼2.7 μm in tissue). These lines were
stitched serially in the x direction (see Fig. 1) into en face images
in real-time at a two-dimensional (2-D) imaging rate of 2 frames
per second (fps). As mentioned previously, the LS-DAC micro-
scope is capable of acquiring images at video rates (15 to
30 fps). However, for the purposes of this study, which aimed

Fig. 1 (a) Schematic of the LS-DACmicroscope. A cylindrical lens “C”
is inserted in the collimated region of the illumination path to transform
a point focus into a line focus. The focal line is scanned by the scan
mirror in the x direction to create a 2-D en face image of the sample
(in the x -y plane). The hemispherical SIL acts as a sample holder
that is translated along the axial (z) direction by a motorized stage
(not shown) to enable volumetric imaging. (b) Zoomed-in view of
the LS-DAC microscope near the sample.
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to develop a standardizable phantom and quantitative imaging
methods, a lower frame rate was utilized to maximize signal-to-
noise ratios (SNR) and to demonstrate the feasibility of our
methods. Volumetric data were collected by translating the sam-
ple holder along the z axis with a motorized linear actuator
(TRA12CC, Newport Corperation, Irvine, California).

2.2 System Standardization with an Agarose-Based
Fluorescent Bead Phantom

2.2.1 Phantom preparation

Our standardization phantom consists of fluorescent micro-
spheres in an agarose gel. The fluorescence microspheres
(19111-2, Fluoresbrite polychromatic red microspheres) used
for this phantom are commercially available through Polysciences
Inc. (Warrington, Pennsylvania). These polystyrene-based
microspheres are National Institute of Standards and Technol-
ogy (NIST)-traceable size standards and are designed to be opti-
mally excited at a wavelength of near 525 nm, with an emission
peak at 565 nm. In this study, the particles are excited with low
efficiency at 405 nm, and only the tail of the fluorescence spec-
trum is collected with a 600-nm long-pass filter. While this
causes the detected fluorescence signal to be relatively weak
(compared with the fluorescence signal from the beads at
their optimal excitation/emission wavelengths), this weaker sig-
nal approximates the strength of the PpIX fluorescence seen in
glioma tissues from patients who have been administered 5-
ALA and allows the alignment and performance of the micro-
scope to be assessed under realistic conditions (in situ fluores-
cence signal levels).

The stock concentration of microspheres (2.5% aqueous
suspension) was diluted 40 times in a 0.8% agarose solution
(Sigma Aldrich A9539) at 70°C, and the mixture was allowed
to solidify while cooling to room temperature.

2.2.2 Phantom-assisted alignment

Because PpIX has an unusually large Stoke’s shift (λex ¼
405 nm; λem ¼ 625 nm), the proper alignment of the illumina-
tion and collection beam paths of the DAC microscope (or any
alternative microscope technology) must account for the chro-
matic differences between these disparate wavelengths. The
fluorescent bead phantom developed in this study is used to pro-
vide a high-resolution target (the beads are 6 μm in diameter)
that may be used to optimize the alignment of the microscope at
an illumination and collection wavelength of 405 and >600 nm,
respectively. Volumetric imaging data of the phantom are col-
lected to verify that both the sensitivity (SNR) and the three-
dimensional spatial resolution (FWHM dimensions of the
beads) are uniform across the field of view (FOV), confirming
satisfactory alignment of the dual-axis beams with respect to
each other (for high resolution) and with respect to the hemi-
spherical SIL (for uniform resolution across the FOV). For
clinical use, a method to verify that the performance of an
optical-sectioning microscope is reproducible is to measure the
SNR and spatial resolution of the microscope in a volumetric
phantom. Here, the SNR is calculated as

EQ-TARGET;temp:intralink-;e001;63;128SNR ¼ S − B
σB

; (1)

where S is the mean of the peak pixel intensity of all beads in an
image, B is the mean pixel intensity of the background, and σB is

the standard deviation of the background signal. Note that the
standard deviation of the peak signal from each bead cannot be
reliably measured due to the small size of the beads and their
spherical geometry, with only a single pixel corresponding to
the peak of each bead.

2.3 Ex Vivo Imaging of PpIX-Expressing Human
Brain Tissues

2.3.1 Tissue preparation

Glioma tissue samples (n ¼ 14) were collected from consenting
patients at the Barrow Neurological Institute (Phoenix, Arizona)
in accordance with an approved protocol (IRB #10BN159).
Patients were orally administered 5-ALA at a concentration
of 20 mg∕kg 3 h prior to surgery, and brain biopsies obtained
during surgery were fixed in 3% paraformaldehyde for 24 h and
then stored in 1× phosphate-buffered saline at 4°C before being
imaged with a custom LS-DAC microscope. All tissue speci-
mens were obtained from MRI-enhancing regions correspond-
ing to the bulk tumor. After the LS-DAC images were taken,
the imaged tissue surfaces were physically sectioned (10 μm
in thickness) in the en face direction (as close and parallel to
the tissue surface as possible) and mounted on standard micro-
scope slides. Histology slides were imaged with a conventional
epifluorescence microscope (DMIRB inverted, Leica Inc.,
Wetzlar, Germany) to visualize intracellular PpIX expression
(625-nm emission). In addition, adjacent sections were stained
with hematoxylin and eosin (H&E) and imaged with a standard
bright-field pathology microscope (Fig. 2).

2.3.2 Image acquisition and quantification

For LS-DAC microscopy, volumetric imaging data were col-
lected at three random tissue locations from each tissue speci-
men. The FOV of the microscopy datasets was 350 μm (x) by
520 μm (y) by 150 μm (z, depth), and the sampling pitch in
these three dimensions was 0.79, 0.88, and 0.69 μm, respec-
tively. From each volumetric dataset, 10-μm-thick average-
intensity projections (i.e., optical sections) were visualized
to simulate images of 10-μm-thick slide-mounted histology
sections. For the quantitative comparison study of LS-DAC
microscopy versus fluorescence histology, three regions of
interest (350 μm by 520 μm) were randomly selected for cor-
relative analysis. Identical microscope settings were used for
the imaging of all histology slides.

In this study, we attempted to quantify the density of the
expression of punctate and localized spots of PpIX that appear
in glioma tissues.32,53 The density of PpIX expression was quan-
tified using an identical algorithm for both the LS-DAC micros-
copy and fluorescence histology images. In brief, the algorithm
identifies and quantifies the density of localized spots of PpIX
that are brighter than the tissue background (mostly autofluor-
escence) in which the background is assumed (and observed) to
be relatively uniform. The quantification algorithm was imple-
mented via a custom MATLAB® script.

1. Based on the intensity histogram of each image, an
exponential curve fit was performed on the low-inten-
sity background distribution, and a threshold was
defined that corresponded to the 99.5th percentile of
the background distribution (area under the curve).
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2. Once the threshold was identified, a binary image was
created by setting all pixels above the threshold as
positive [black in Fig. 3(c)] and everything else as
negative [white in Fig. 3(c)].

3. A “PpIX-positive spot”was defined as a group of adja-
cent positive pixels that exhibit an “8-connected” pat-
tern according to a widely used connected-component
labeling algorithm54 (i.e., any two positive pixels that

Fig. 3 The same quantification algorithm was used for both LS-DAC images and histology images.
(a) Example image of PpIX-expressing glioma tissue obtained with the LS-DAC microscope, the perfor-
mance of which is standardized with the method detailed in Sec. 2.2. The scale bar represents 50 μm.
(b) Histogram of the raw image in which the intensity distribution of the background is approximated as an
exponential decay. The dotted line denotes the threshold for segmentation in which pixels with intensities
above this threshold are considered “positive” for PpIX expression. (c) A binary image of (a) obtained
after segmentation, utilizing a 99.5th percentile threshold to the exponential fit.

Fig. 2 Workflow of the study with example images. (a, b) Glioma patients were orally administered 5-ALA
prior to PpIX-fluorescence-guided surgery. (c) A brain biopsy (grade-III glioma) obtained during the surgical
procedure was then imaged with optical-sectioning fluorescence microscopy to obtain images of PpIX
expression with subcellular resolution. (d) Corresponding images from histology slides (both H&E staining
and PpIX fluorescence) were obtained to validate the optical-sectioning results. (e, f) Example of wide-field
intraoperative images from a high-grade glioma (HGG) and a low-grade glioma (LGG) case, respectively,
showing that the tumor resembles the surrounding normal tissues under white light imaging in both cases.
(g) Photograph of a biopsy specimen placed on the sample holder of a tabletop LS-DAC microscope.
(h) Image of an H&E-stained histology section at 40× as a confirmation of the presence of glioma cells
in the biopsy specimen. (i, j) Intraoperative wide-field images of PpIX fluorescence (pink color) from the
regions shown in (e) and (f), showing that wide-field surgical fluorescence microscopy was capable of
detecting PpIX fluorescence from the HGG but not from the LGG. (k) Optical-sectioning microscopy
image of the biopsy, showing subcellular PpIX expression. (l) PpIX fluorescence histology image of the
same biopsy imaged in (k), showing a similar pattern of PpIX expression. All scale bars represent 50 μm.
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share an edge or a vertex will be classified into the
same “PpIX-positive” feature). The PpIX density is
then defined as the total number of “PpIX-positive
spots” per mm2 (note that each image has an FOV of
350 μm × 520 μm).

3 Results
A total of 14 high- and low-grade glioma samples were imaged
during a 15-month period. To ensure the identical performance
of the imaging system on different days, the SNR of detection
(see Sec. 2.2) was quantified from images of the fluorescent
phantom. In addition, the spatial resolution of the system (in
all three dimensions) and the uniformity of performance across
the FOV were also assessed to confirm the proper alignment of
the LS-DAC system (Fig. 4). With the system settings fixed (see
Sec. 2.1), the following parameters could be attained in multiple
experiments over the entire course of the study (15 months): the
SNR of detection was 30.05 dB� 3%; the average measured
dimensions (FWHM) of the fluorescent beads (∅ ¼ 6 μm)
were 7.5� 0.2 μm in the lateral directions and 9.6� 0.5 μm
in the axial direction (enlarged due to diffraction and minor
aberrations). No noticeable fluorescence degradation was
observed in the microspheres within a shelf life of 12 months.

For each of the 14 samples, a 10-μm optical section was
obtained at three random tissue locations (see Sec. 2.3.2)
with the LS-DAC microscope, and the average PpIX density
(defined in Sec. 2.2.2) at these three locations was quantified.
The same metric (PpIX density) was calculated from the corre-
sponding histology images, and a positive linear relationship

was observed between LS-DAC microscopy versus histology
(Fig. 5).

4 Discussion and Conclusion
This study developed a set of tools to enhance the clinical trans-
lation of optical-sectioning microscopes for real-time pathology
and quantitative surgical guidance of glioma resections. First, a
standardization method based on a fluorescent bead phantom
was developed. This custom phantom is highly reproducible,
stable, and simple to prepare and provides uniform microscopic
structures that mimic the sparse and weak fluorescence from 5-
ALA-induced PpIX generated by subcellular organelles within
glioma tissues. As shown in Fig. 4, this phantom is a valuable
tool for ensuring the proper alignment of an optical-sectioning
microscope, enabling quantitative characterization of the sensi-
tivity, resolution, and uniformity of the imaging system. As a
result, it is possible to obtain reproducible quantitative images
of PpIX-expressing brain tissues, which will be necessary to
standardize the performance of clinical devices in single-site
clinical studies over time and/or in multisite clinical studies.
This standardization method is applicable to a variety of
optical-sectioning microscopy technologies for intraoperative
guidance of glioma resections based on PpIX fluorescence.
Second, we showed that quantitative PpIX images obtained
with LS-DAC microscopy correlate positively with fluorescence
histology, suggesting that LS-DAC microscopy can potentially
serve as a minimally invasive and real-time alternative to con-
ventional biopsy and histopathology.

In this study, the density of localized spots of subcellular
PpIX expression was chosen as a quantitative metric of interest
because it is a potential surrogate measure of tumor burden.

Fig. 4 (a) A maximum-intensity depth projection (along the z axis) of a volumetric image of the alignment
phantom is shown for a misaligned LS-DAC microscope. (b) A maximum intensity projection of a volu-
metric image of the phantom (Video 1) is shown from a well-aligned system in which the intensity of
the fluorescent beads is uniform across the FOV with <15% deviation (center to edge) and all beads
are well-resolved across the entire FOV of 350 μm (x ) by 520 μm (y ) by 150 μm (z) (Video 1, MPEG,
2.6 MB [URL: http://dx.doi.org/10.1117/1.JBO.22.4.046005.1]). (c) Example cross-sectional views of one
bead. The FWHM dimensions of the microsphere allow for the assessment of the spatial resolution of the
system. (d, e) Alpha-blending volume renderings of (a and b), respectively, illustrate the uniformity
of the detected fluorescence signal from the beads as well as the uniformity of the spatial resolution
across the entire FOV. The scale bar represents 50 μm.
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We show that PpIX density is an objective quantity that can be
extracted from both DAC microscopy and histology images,
with excellent correlation between these two techniques.
Importantly, we note that PpIX density alone may not be an
accurate indicator of tumor burden. For example, in some cases,
although PpIX density is high, the intensity of the PpIX fluo-
rescence may be low, and/or the size of the PpIX-expressing
spots may be smaller than in other specimens. This observation
suggests that the intensity and sizes of the signal should also be
taken into account when developing a surrogate measure of
tumor burden or proliferative index. The observations are con-
sistent with our biological understanding of PpIX generation as
the volumetric production of PpIX granular inclusion bodies in
brain tumor cells can vary from cell to cell. Ultimately, the clini-
cal significance of these different metrics, for the purposes of
optimizing the extent of resection for glioma patients, must be
validated through outcome-based clinical studies. Toward this
aim, a miniature version of the LS-DAC microscope utilized
in this study is currently being assembled and characterized45

in preparation for future clinical use. In summary, the develop-
ments in this study are of value for the clinical translation of
handheld intraoperative fluorescence microscopes to guide the
resection of gliomas and to improve outcomes for glioma patients.
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