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ABSTRACT: Nicotinic acetylcholine receptors (nAChRs)
have been investigated for developing drugs that can
potentially treat various central nervous system disorders.
Considerable evidence supports the hypothesis that modu-
lation of the cholinergic system through activation and/or
desensitization/inactivation of nAChR holds promise for the
development of new antidepressants. The introductory portion
of this Miniperspective discusses the basic pharmacology that
underpins the involvement of α4β2-nAChRs in depression,
along with the structural features that are essential to ligand
recognition by the α4β2-nAChRs. The remainder of this
Miniperspective analyzes reported nicotinic ligands in terms of drug design considerations and their potency and selectivity, with
a particular focus on compounds exhibiting antidepressant-like effects in preclinical or clinical studies. This Miniperspective aims
to provide an in-depth analysis of the potential for using nicotinic ligands in the treatment of depression, which may hold some
promise in addressing an unmet clinical need by providing relief from depressive symptoms in refractory patients.

■ INTRODUCTION

Depression is a common and frequently severe psychological
condition with a distinct change of mood, characterized by
sadness, loss of interest and pleasure, feelings of guilt or low self-
worth, disturbed sleep or appetite, and feelings of tiredness and
poor concentration, affecting approximately 120 million people
worldwide.1 Numerous therapeutic agents exist for the treatment
of depression that target monoamine transporters regulating the
uptake of the neurotransmitters dopamine, serotonin, and
norepinephrine.2 However, a considerable proportion of patients
respond poorly to these drugs,3 as demonstrated by the NIMH-
funded sequenced treatment alternatives to relieve depression
(STAR*D) study conducted between 2001 and 2006, which
highlighted the inadequacy of current medications for major
depressive disorder (MDD).4 Therefore, there is still an urgent
need for potent pharmacotherapies associated with novel
biological mechanisms of action. In this Miniperspective, we
review the association between depression and nicotinic
acetylcholine receptors (nAChRs), especially the α4β2-nAChR

subtype, from the perspective of clinical and preclinical findings.
We highlight the most recently developed α4β2-nAChR agonists
and antagonists that exhibit antidepressant-like effects in vivo.
The cholinergic hypothesis of depression proposes that

hyperactivity of the cholinergic system over that of the adrenergic
system leads to depression (Figure 1).5 Several lines of evidence
from rodent and human studies support this hypothesis. Flinders
sensitive rats, a line selectively bred for increased cholinergic
sensitivity, were found to exhibit several depression-like
behaviors,6,7 and increased acetylcholine (ACh) signaling in
the hippocampus was found to promote behaviors in mice
related to anxiety and depression.8 In humans, physostigmine,
which potentiates cholinergic transmission by inhibiting
acetylcholinesterase (AChE), the enzyme that breaks down
ACh, produces depressive-like symptoms in individuals with and
without a history of depression.5 Administration of the

Received: December 17, 2013
Published: June 5, 2014

Perspective

pubs.acs.org/jmc

© 2014 American Chemical Society 8204 dx.doi.org/10.1021/jm401937a | J. Med. Chem. 2014, 57, 8204−8223

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

L
U

PI
N

 L
T

D
 o

n 
Se

pt
em

be
r 

25
, 2

01
9 

at
 1

3:
48

:1
6 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

pubs.acs.org/jmc
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


nonselective nicotinic antagonist mecamylamine (1) (Scheme
1),9−11 the partial agonist varenicline (2),12 or the muscarinic
antagonist scopolamine (3)13,14 demonstrated putative anti-
depressant-like effects, especially in treatment-resistant patients
receiving their regular psychotropic medications such as the
selective serotonin reuptake inhibitor (SSRI) citalopram (4).9

Magnetic resonance imaging studies have shown that the levels
of choline, the rate-limiting precursor to endogenous ACh, were
elevated in the brains of patients with depression as well as in the
frontal cortex of adolescents with depression.15,16 Additionally, a
number of key antidepressants such as SSRIs (fluoxetine,
sertraline (5), paroxetine, and citalopram 4), the norepinephrine
reuptake inhibitor reboxetine (6), the norepinephrine dopamine
reuptake inhibitor bupropion (7), and tricyclics (amitriptyline
(8), imipramine (9), and nortriptyline)17 have all been shown to
possess antagonistic activities at nAChRs,18−20 although, in most
cases, drug concentrations achieved in the human brain would
not be adequate to affect nAChR functions.21 Nicotine (10)
itself, and some nicotinic agonists or antagonists, can potentiate
the antidepressant-like effects of the SSRIs and SNRIs in rodent
models,22,23 likely due to the common end point of reduced
function due to receptor desensitization by agonists or
antagonism. The development of nAChR ligands to attenuate
cholinergic activity to treat depression could conceivably help to
treat depressive symptoms in refractory patients.

■ NICOTINIC ACETYLCHOLINE RECEPTORS AND
DEPRESSION

The twomajor types of cholinergic receptors are muscarinic ACh
receptors (mAChRs) and nAChRs, both of which are widely
distributed in the central and peripheral nervous systems.24 G
protein-coupled mAChRs are believed to be involved in mood
regulation and AChE-induced depressive behavior.5,13,14,25

Neuronal nAChRs belong to the ligand-gated ion channel
superfamily of neurotransmitter receptors. Varying combinations
of nAChR subunits (α1−α10, β1−β4, γ, δ, and ε; α2−α7 and
β2−β4 are expressed in the brain) assemble into pentameric ion
channels, allowing for diverse pharmacological properties.26

Each nAChR subunit consists of a large amino-terminal
extracellular domain (ECD), a transmembrane domain compris-
ing four α-helices (M1−M4), and a variable cytoplasmic domain
between M3 and M4. ACh binding sites are thought to form
between the subunit interfaces of the ECD bound by the C-loop
containing the face of an α-type subunit and the face of an
adjacent subunit. When acutely activated by endogenous ACh or
exogenous nicotinic ligands, nAChRs form transient open
cationic channels that allow the ions Na+, K+, and Ca2+ to flow
across the plasma membrane and induce cellular responses.27

Prolonged exposure to ACh or nicotinic agonists causes a gradual
decrease in the rate of this ionic response, leading to a longer-
lasting functionally inactive state through a process referred to as
desensitization. nAChRs have been found to contribute to mood

Figure 1.Role of the cholinergic system in depression. The cholinergic hypothesis of depression postulates a hyperactivity of the cholinergic system over
that of the adrenergic system in the brain. Choline (the rate-limiting precursor to endogeneous ACh) crosses the blood−brain barrier to enter the brain
and is actively transported into the cholinergic presynaptic terminals by an active uptake mechanism. The neurotransmitter ACh is synthesized from
choline and acetyl coenzyme A, catalyzed by the enzyme choline acetyl transferase. ACh is sequestered into secretory vesicles by vesicular ACh
transporters. Once released from the presynaptic terminals, ACh can interact with a variety of presynaptic and postsynaptic receptors. Two classes of the
cholinergic ACh receptors are muscarinic (G protein-coupled) and nicotinic (ionotropic). Once activated, nAChRs form transient open cationic
channels that allow the ions Na+, K+, and Ca2+ to flow across the plasma membrane and induce cellular responses. Prolonged exposure to ACh or
nicotinic agonist causes a gradual decrease in the rate of this ionic response, leading to a high affinity, longer-lasting functionally inactive state, referred to
as desensitization. ACh has its signal terminated primarily by the enzyme AChE, unlike many other monoaminergic neurotransmitters where reuptake
mechanisms predominate.
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control by regulating behavioral reinforcement in the mesolimbic
dopamine system, corticotropin releasing factor and function in
the hypothalamic−pituitary−adrenal (HPA) axis, circadian

rhythms in the suprachiasmatic nucleus, and cytoplasticity in
the hippocampus.11 Given nAChR subtype diversity and their
involvement in the modulation of various key neurotransmitter

Scheme 1. Compound Structures
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systems, including dopamine, serotonin, norepinephrine, gluta-
mate, and γ-aminobutyric acid (GABA), nicotinic ligands have
the potential to treat a multitude of neurological and psychiatric
disorders, including depression.9,28

The α4β2 heteropentameric and α7 homopentameric
subtypes are the two major nAChR subtypes expressed in the
brain (Figure 2).29 Both subtypes are implicated in the mediation

of the pharmacological and behavioral effects of compound 10
and in nAChR-mediated modulation of monoamine release30,31

and are likely involved in the antidepressant effects of nicotinic
ligands. Studies investigating the role of nAChRs in depression
have focused primarily on the α4β2* (asterisk indicates possible
assembly with other subunits) and α7-nAChR subtypes. α4β2*-
nAChRs are widely distributed in the neuroanatomic regions
implicated in depression, including the thalamus, basal ganglia,
striatum, hypothalamus, amygdala, ventral tegmental area
(VTA), locus coeruleus, and dorsal raphe nucleus,9 and α7-
nAChRs are highly expressed in the hypothalamus, hippo-
campus, and cortex.32,33 α4β2*-nAChRs are thought to regulate
the release of monoamine neurotransmitters through action in
these areas.34,35 β2-knockout mice showed decreased immobility
in the forced swim test (FST) compared to that of wild-type
mice, indicating that the absence of β2-nAChRs-mediated
signaling could manifest in an antidepressant-like phenotype in
vivo.36 The antidepressant-like effect of the nAChR antagonist
compound 1 was diminished when the β2- or α7-subunits were
knocked out.37 Similarly, the antidepressant-like effects of the
nAChR agonist sazetidine-A (11)38 and the tricyclic anti-
depressant compound 836 were absent in mice lacking the β2-
subunit. Additionally, the efficacies of compounds 4 and 6 in the
mouse FST were enhanced by agonists at either α4β2*- or α7-
nAChRs.23 These findings suggest the involvement of β2- and

α7-receptor subtypes in mediating the antidepressant-like effects
of nicotinic ligands.
Clinical studies provide additional evidence for a relationship

between α4β2*-nAChRs and depression. Single photon
emission computed tomography (SPECT) using the α4β2*-
nAChR specific radioligand [123I]5-I-A-85380 ([123I]12) re-
vealed that the β2*-nAChR availability across all brain regions in
depressed patients was lower than that in healthy subjects.39

Additionally, positron emission tomography using 2-[18F]fluoro-
3-(2[S]-2-azetidinylmethoxy)-pyridine showed reduced levels of
ligand binding to α4β2*-nAChR in Parkinson’s patients with
depressive symptoms.40 It was recently reported that the clinical
action of compound 6 may be at least partially due to its
inhibitory action on α4β2-nAChR.41

Designing a nicotinic ligand to provide maximal therapeutic
efficacy and minimal side effects depends on a ligand’s ability to
specifically target the desired combination of nAChR subtypes.
Observations that nAChR α6 subunits are not widely distributed
in the brain but are most prevalent in midbrain dopaminergic
regions in the mammalian CNS suggest their potential
involvement in mood control. As such, targeting α6*-nAChR
may be indicated.11,42−44 In the basal ganglia, the VTA and
substantia nigra, in particular, α6- and possibly nAChR β3
subunits, are included in α4β2*-nAChRs that appear to have
high affinity for nicotinic agonists.34 α3β4*-nAChR subtypes are
expressed at relatively low levels in the brain45 except for the
interpeduncular nucleus, fasciculus retroflexus, and median
habenula.46 However, activation or blockade of α3β4*-nAChR,
which are also expressed in the peripheral nervous system, may
result in side effects in vivo, including dysregulation of the
autonomic nervous system.47,48 Selective and potent partial
agonists of α4β2*-nAChRs, especially those with low affinity for
α3β4*-nAChRs, are considered to have higher efficacy and likely
fewer side effects in rodent behavioral models, although the
involvement of α3β4*-nAChRs in mood control cannot be
completely ruled out.49−51 We also point out that because of
their roles as “accessory” subunits that are incapable of forming
functional receptors alone or even in combination with nAChR α
or β subunits (except, perhaps, as α7α5-nAChR), we have not
delved deeply into the potential roles played by the α5 subunits.
However, α5 subunits can integrate into α3β4*- and α4β2*-
nAChRs and perhaps into α6*-nAChRs to further extend the
diversity in receptor subtypes and isoforms, which may affect
pharmacological profiles.52,53 Continuing studies will extend our
knowledge of the role of α5 subunits in nAChRs.
The essential pharmacophore presented by nicotinic ligands

consists of a cationic center (e.g., a quaternized or protonated
nitrogen) and a hydrogen-bond acceptor (e.g., the pyridine
nitrogen atom in the case of compound 10). The cationic
nitrogen binds to a tryptophan residue of the principal α-subunit,

Figure 2. Selected nAChR subtypes. The high sensitivity (HS) α4β2-
nAChR has a presumed α4/β2 subunit ratio of 2:3 and exhibits
comparatively high sensitivity to nicotinic agonists, whereas the low
sensitivity (LS) α4β2-nAChR, at which nicotinic agonists have lower
observed potency, is composed presumably of α4 and β2 subunits in a
3:2 ratio.

Figure 3. Top view of X-ray crystal structures of Ac-, Ls-, and Ct-AChBPs. The figure was generated using PDB files 2BR7, 1I9B, and 4B5D by PyMOL.

Journal of Medicinal Chemistry Perspective

dx.doi.org/10.1021/jm401937a | J. Med. Chem. 2014, 57, 8204−82238207



forming a cation−π interaction.54−56 The hydrogen-bond
acceptor has been shown to bind to the complementary β-
subunit, likely mediated by a water molecule to the backboneNH
of a Leu residue in the α4β2 receptor.57,58 Additionally, various
studies support the idea that agonist interactions with the
principal α-subunit are important for binding affinity, while
interactions with key amino acids present in the complementary
β-subunit affect agonist efficacy.59,60

High-resolution crystal structures of integral membrane
protein mammalian nAChRs are not yet available. Invertebrate
pentameric acetylcholine binding protein (AChBP) subunits
share 20−24% sequence identity with that of the homologous
ECDs of nAChR subunits. However, the putative binding site
and some aromatic residues found in nAChR subunits are
reported to be conserved. Therefore, AChBPs have been
characterized and used to provide insights into ligand recognition

Figure 4. Amino acid sequence alignment of the Ct-AChBP with extracellular domains of nAChR α4 or β2 subunits. Green boxes highlight positions of
key residues of the α4 subunit, and blue boxes outline key residues of the β2 subunit. Residue numeration refers to that for the human α4 subunit. (This
is for the mature α4 subunit, not including cleavage of the leaders sequence including the translational start methionine residue.).

Figure 5. Homology model of the human α4β2-nAChR ECD including the ligand binding interface: (A) ribbon structure representation colored by
subunit (yellow, α4; azure, β2) for the human α4β2-nAChR ECD and (B) superimposition of the modeled structure (in blue) with the experimental
template from Ct-AChBP (in red).

Journal of Medicinal Chemistry Perspective
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sites and other elements of nAChR subunit ECDs and ligand
binding site interfaces. The majority of ligand-bound structures
have been obtained with AChBP from Aplysia californica (Ac) or
Lymnaea stagnalis (Ls) (Figure 3). The Ls-AChBP was
postulated to be a more suitable surrogate of α4β2-nAChR for
a series of 1-(pyridin-3-yl)-1,4-diazepane analogues because the
Trp 53 in Ls-AChBP subunits is Tyr in Ac-AChBP subunits,
which interacts less favorably with the quaternized or protonated
nitrogen of nicotinic ligands. Recently, the nonmolluscan
acetylcholine binding protein from the marine annelid Capitella
teleta (Ct), namely, Ct-AChBP, was identified61 and reported to
more closely mimic α4β2-nAChR than does the Ac-AChBP
based on comparisons of the ligand binding affinities.62 The X-
ray crystal structure of Ct-AChBP with lobeline or compound 2
bound along with mutagenic studies highlight the importance of
key interactions that are responsible for receptor activation or
desensitization and for location of key residues in loops D (W57)
and E (V111, F119, and L121) in the complementary subunit
opposed to the α subunit at the ligand binding subunit interface.
Because of the higher homology between Ct-AChBP and the

human α4 and β2 subunits (as computed by ClustalX: α4/Ct-
AChBP = 64.6% and β2/Ct-AChBP = 62.1%), especially for key
residues involved in ligand recognition (Figure 4), a homology
model was generated and refined based on a Ct-AChBP for the
ligand binding domain of the human α4β2-nAChR. A ribbon
structure for the ECD modeled α4β2-nAChR shows a 10-
stranded β-sandwich capped by an N-terminal α-helix for each
subunit (Figure 5A), for which the modeled β-sandwich can be
nicely superimposed on that of Ct-AChBP (Figure 5B). This
homology model may provide useful information for designing
other selective α4β2-nAChR ligands.63

■ nAChRAGONISTS ANDANTAGONISTS EXHIBITING
ANTIDEPRESSANT-LIKE EFFECTS

The diversity of nAChR subtypes provides an opportunity to
generate subtype-specific ligands that could treat a variety of
conditions, although the high sequence homology across
individual subtypes of brain nAChRs poses a substantial
challenge for the development of subtype-selective nicotinic
drugs. Both academia and industry have contributed to a growing
body of literature concerning the rational design of potential
antidepressant ligands that more selectively target β2*-nAChR
than does compound 10.
Rodent behavioral models have been used to assess

antidepressant-like effects of these new chemical entities. The
most widely used behavioral assay for antidepressant-like efficacy
is the FST, in which a mouse or rat is placed in a beaker of water
and the amount of time the animal spends passively floating is
measured. Clinically therapeutic antidepressants typically reduce
the time an animal will spend immobile. Similarly, the tail
suspension test (TST) measures immobility time when the
rodent is suspended by its tail. This test is relatively short in
duration, and in the case where an antidepressant agent is given,
the animal will struggle for longer periods of time compared to
vehicle treated animals.64 The novelty-suppressed feeding (NSF)
test is a behavioral paradigm originally utilized to measure
anxiolytic-like effects of drugs, but more recently the NSF assay
has been proposed as a behavioral platform sensitive to the
chronic but not acute administration of antidepressants. In NSF,
food-deprived mice experience a conflict between feeding and
the fear of exploring the novel environment of a brightly lit open
area or an unfamiliar cage containing food. Chronic treatment
with antidepressants reduces latency to eat in the novel

environment. Additionally, an alternative version of the NSF
has been advanced that is called the novelty-induced hypophagia
(NIH) test, but it utilizes a palatable food to eliminate the need
for food restriction. In general, these models predict the onset of
action of antidepressants consistent with the therapeutic time
course found in humans and therefore validate the NSF/NIH
tests as useful behavioral paradigms to gauge the antidepressant
efficacy of compounds.65

■ nAChR ANTAGONISTS

(1R,2S,4S)-N,2,3,3-Tetramethylbicyclo[2.2.1]heptan-2-
amine, 13.

The nicotinic ligand that has received the most attention as a
potential antidepressant is compound 1, a racemic non-
competitive and nonselective antagonist of nAChRs (IC50,α3β4
= 91−610 nM, IC50,α4β2 = 0.6−2.5 μM, and IC50,α7 = 1.6−6.9
μM). Originally developed as an antihypertensive agent,
anecdotal reports of mood modulation and a hypothesis that
traditional antidepressants might be acting in part through
noncompetitive antagonism of nAChRs19 led to a preliminary
controlled study that demonstrated therapeutic effects of
compound 1 for mood disorders, including MDD, that were
comorbid with Tourette’s disorder.10,50 However, the subgroup
sizes were very small, and the comorbidity with Tourette’s
disorder precluded any conclusions from being drawn about the
antidepressant efficacy of compound 1 monotherapy in patients
who do not have Tourette’s disorder.
In studies using receptor expression in Xenopus oocytes, the

2S-(+)-enantiomer of compound 1, TC-5214 (13),51 was found
to dissociate more slowly than 2R-(−)-mecamylamine (14) from
α4β2- and α3β4-nAChRs, as well as more slowly from α4β2-
than α3β4-nAChRs. IC50 values for compound 13 at α3β4-,
α4β2-, α7-, or α1β1γδ-nAChRs are similar to those of compound
14 (IC50,α3β4 = 0.2−0.6 and 0.05−0.4 μM, IC50,α4β2 = 0.5−3.2 and
0.5−1.7 μM, IC50,α7 = 1.2−4.6 and 2.2−5.8 μM, and IC50,α1β1γδ =
0.6−2.2 and 0.3−1.1 μM).51 Further pharmacological studies
suggested that compound 13 is a more efficacious antagonist of
LS α4β2-nAChRs than compound 1 and can act as a positive
allosteric modulator at HS α4β2-nAChRs.66 This was hypothe-
sized to be mechanistically important; however, the positive
allosteric modulation at α4β2-nAChRs was inferred from a slight
potentiation of the HS α4β2-selective agonist TC-2559 (15) in a
mixed population of HS and LS α4β2-nAChRs. Potentiation of
ACh was not demonstrated, and because the effect was not
reproduced in a pure population of HS α4β2-nAChRs, activation
of LS α4β2-nAChRs by the coapplication of compounds 15 and
13 was not excluded.
Compound 13 exhibited higher anxiolytic- and antidepres-

sant-like effects in several animal models than racemic mecamyl-
amine (forced swim and social interaction tests, light/dark
assay). These behavioral activities were attributed to antagonist
effects at α4β2*-nAChRs.67 Moreover, compound 13 showed a
superior preclinical safety profile compared to that of either the
racemic compound or the 2R-(−)-enantiomer. Compound 13

Journal of Medicinal Chemistry Perspective

dx.doi.org/10.1021/jm401937a | J. Med. Chem. 2014, 57, 8204−82238209



was found to be well-tolerated in acute and chronic toxicity
studies in different animal models (mice, rats, and dogs) and
showed acceptable pharmacologic, pharmacokinetic, and meta-
bolic profiles for therapeutic development.
Targacept advanced compound 13 to a phase 2 study as an

augmentation in patients who were inadequate responders to the
SSRI compound 4. Initial results were very promising, with
patients showing an average 6 point improvement on the primary
end point, the Hamilton depression rating scale (HAM-D), as
well as improvement on other secondary measures.68 A
collaboration with AstraZeneca (Targacept and AstraZeneca’s
RENAISSANCE program) followed, advancing compound 13 to
phase 3 development as an adjunctive therapy in MDD patients
who were inadequate responders to SSRI or SNRI monotherapy.
Unfortunately, four phase 3 trials (two fixed and two flexible dose
trials) failed to meet the primary end point of achieving a greater
change in the Montgomery−Asberg depression rating scale total
score for the experimental group receiving an adjunctive therapy
of compound 13 combined with an SSRI or SNRI than for the
placebo group receiving monotherapy with an SSRI or SNRI
alone.69−72

There are several possible explanations for the failure of
compound 13 in the phase 3 trials. One explanation is that the
studies that utilized compound 13 as an adjunct therapy had an
unusually high placebo response. Every dose group (compound
13 and placebo) showed at least a 40% improvement in the
MADRS total score after 8 weeks of adjunct treatment. A
contemporaneous phase 2b monotherapy study of compound
13, which had a lower placebo response, provided some
indications of a dose-related antidepressant response, but the
study was terminated early.73 It has been suggested that pursuing
compound 13 as a monotherapy may have led to a better
outcome than as a combination therapy with an SSRI or
SNRI.73,74 Subjects in placebo groups in the combination study
received SSRI or SNRI treatment, and manipulation of the
serotonergic or noradrenergic system may have interfered with
the antidepressant response of compound 13.73 Additionally,
other authors have suggested that a combination study with a
tricyclic antidepressant, which would have antimuscarinic effects,
rather than an SSRI or SNRI devoid of antimuscarinic activity,
may have been more effective. An antidepressant with
antimuscarinic effects could have pro-nicotinic effects through
a neuro-adaptive upregulation of cholinergic tone, which could
be normalized by compound 1. Alternatively, combining an
antinicotinic with an antimuscarinic may have produced a
complementary effect in reducing a hypercholinergic state than
either treatment alone. Papke and Picciotto74 also suggest that
compound 1, in particular, the 2S-(+)-enantiomer 13, may not
have been the best choice for the clinical trials. The rationale for
using compound 13 was based on a study that suggested that
compound 13 had both activating and inhibitory effects at α4β2-
nAChRs, a better in vivo profile in animal studies, and a better
safety profile than the 2R-(−)-enantiomer.67,75 However, more
recent studies found little in vitro evidence to differentiate the
pharmacological properties of compound 1 and the 2R- and 2S-
enantiomers and only a modest difference in potency in vivo in
the tail flick test between the stereoisomers.76 Furthermore,
compound 1 is an antagonist that is more potent at inhibiting
ganglionic α3β4-nAChRs than α4β2-nAChRs in the brain that
are thought be the primary target of hypercholinergic activity
associated with depression.25,77 A recent estimate of the free
compound 1 concentration in the brain indicates that it is likely
insufficient to be pharmacologically relevant, blocking approx-

imately 20% of α4β2*-nAChR function.21 Further evidence that
compound 13 did not provide sufficient inhibition on nAChRs
comes from the failure of CP-601927 (16),78 an α4β2 partial
agonist that was tested in a phase 2 clinical trial as an
augmentation in treatment resistant subjects with major
depression.79,80 Weber et al.21 propose that compound 16,
which was predicted to inhibit only 23% of α4β2-nAChRs,81

would not translate into improved antidepressant efficacy.
Although it is possible that compound 13 could be an effective

monotherapy, given its poor nAChR subtype selectivity and the
failure in the phase 3 clinical trial, it seems unlikely that this ligand
will have a future in the treatment of depressive disorders. The
disappointing failure of compound 13 illustrates the need for a
better understanding of the optimal pharmacological properties
to maximize clinical antidepressant efficacy. More potent nAChR
inhibitors that block >25% α4β2 nAChR would likely be more
effective than compound 1 or compound 13. Inhibition may be
achieved with more potent antagonists, partial agonists with very
low intrinsic activity, or desensitizing agents.

2-(tert-Butylamino)-1-(3-chlorophenyl)propan-1-one,
7.

Compound 782 is an α-aminoketone believed to elicit
antidepressant effects by acting as a dopamine and norepinephr-
ine reuptake inhibitor. It was first reported to show efficacy as a
smoking-cessation aid in nondepressed patients in 1994 and has
subsequently proven to be a noncompetitive antagonist at a
variety of nAChR subtypes.83,84 Compound 7 is most potent as a
dopamine reuptake inhibitor, with an IC50 of 550 nM, while
potencies at norepinephrine transporters and a number of
nAChR subtypes fall in the low micromolar range. However, it
has long been appreciated that clinical outcomes correlate poorly
with plasma concentrations of compound 785 and that active
metabolites reaching higher and longer-lasting concentrations in
plasma likely play the leading role. The principal metabolite,
2S,3S-hydroxybupropion (17), has reduced potency at dop-
amine transporters and most nAChR subtypes, whereas its
potency at norepinephrine transporters and α4β2-nAChRs is
enhanced.76 It appears that a determining factor of compound 7’s
efficacy is its metabolism to sufficiently high concentrations of
compound 17, as differences in its plasma concentrations
between responders and nonresponders was the most statisti-
cally significant difference in a 2006 study.86 Plasma concen-
trations reported for compound 17 were in the low micromolar
range. Although compound 7 and another active metabolite,
threohydrobupropion, were present at lower concentrations,
they may have additive effects in combination with the principal
metabolite that provide a significant contribution to a complex
pharmacology mediated by norepinephrine transporters, dop-
amine transporters, and α4β2-nAChRs. Evaluation of compound
7 and its hydroxyl metabolites in the mouse FST showed that
compound 17 was equally potent to that of compound 7,
whereas the 2S,3R-isomer showed no effect on immobility.83 The
2S,3S-isomer was also a more potent inhibitor of [3H]-
norepinephrine uptake and [3H]dopamine update as well as a
more potent antagonist of α4β2-nAChR function than that of the
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2S,3R-isomer, suggesting that the 2S,3S-isomer may be a better
candidate than compound 7 for antidepressant treatment.
(2S,13bS)-2-Methoxy-2,3,5,6,8,9,10,13-octahydro-

1H,12H-pyrano[4′,3′:3,4]pyrido[2,1-i]indol-12-one, 18.

Dihydro-β-erythroidine (DHβE, 18)87 is an alkaloid that is
isolated from the seeds of Erythrina L., a genus of trees and shrubs
that is found in the tropics and subtropics around the globe. In
Central America, Erythrina had an important role in folk
medicine during precolonial times. Compound 18 acts as a
competitive antagonist at α4β2-nAChRs (IC50,α4β2 = 30 nM and
IC50,α3β4 = 23 μM)87 that blocks compound 10-induced
dopamine release from rat striatal slices (IC50 = 30 nM).88

Compound 18 shows antidepressant-like effects in the mouse
FST (3.0 mg/kg) and TST (1.0 and 3.0mg/kg) without affecting
locomotor activity.89 Additionally, compound 18 is able to
potentiate the antidepressant-like effects of compound 9 (4 and
20 mg/kg) in the TST.22

((3S,6S,6aS,7R,7aR,8S,9R,10S,11aR,12S,12aS,13S)-1-
Ethyl-11a,12-dihydroxy-6,8,10,13-tetramethoxydodeca-
hydro-2H -3 ,6a ,12 - (ep iethane[1 ,1 ,2 ] t r iy l ) -7 ,9 -
methanonaphtho[2,3-b]azocin-3(4H)-yl)methyl 2-((S)-3-
methyl-2,5-dioxopyrrolidin-1-yl)benzoate, 19.

Methyllycaconitine (MLA, 19),90 a complex diterpenoid alkaloid
isolated from the seeds of Delphinium brownii, is a competitive
and selective α7-nAChR antagonist with an IC50 value in the
subnanomolar range, as tested in Xenopus oocytes and α7-
transfected SH-SY5Y cells.90,91 Compound 19 was found to
partially inhibit anatoxin-evoked dopamine release from rat
striatal slices92 and decrease the time spent immobile in NMRI
female mice in the mouse FST (10 mg/kg) and TST (10 mg/kg)
without affecting locomotor activity.89 Another study, however,
found no effect of compound 19 (10 mg/kg) in the FST in
BALB/c male mice.38 The discrepancies between these studies,
which may be related to mouse strain, gender, or procedural
differences, warrant further investigation into the role of α7
nAChR inhibition and antidepressant function.
7-(Pyridin-3-yl)-1,7-diazaspiro[4.4]nonane, 20.

Another α4β2-nAChR antagonist is the Targacept compound
TC-2216 (20).93 This compound was reported to show
beneficial effects in preclinical studies, thereby promoting its
further development for the treatment of depression and anxiety
disorders.93 A phase 1 clinical trial of racemic compound 20 was
initiated in 2008, but no further trials were conducted.

■ nAChR AGONISTS

Modulation of nAChRs with partial agonists is pharmacologically

complex, as it involves potentially simultaneous and interacting

effects. Under acute conditions, partial agonists elevate baseline

cholinergic tone while simultaneously lowering the ceiling of

nAChR-mediated signaling. Depending on potency, dose, and

exposure, partial agonists could have an additive effect with

endogenous ACh, thereby lowering the threshold for ACh

signaling while simultaneously lowering the efficacy of that

signal. Under conditions of chronic administration, partial

agonists desensitize nAChR, and it is believed that the resulting

attenuation of cholinergic signaling is the principal pharmaco-

therapeutic end point.

■ CYTISINE AND DERIVATIVES

(1R,5S)-1,2,3,4,5,6-Hexahydro-8H-1,5-methanopyrido-
[1,2-a][1,5]diazocin-8-one, 21.

(−)-Cytisine (21),94 a tricyclic quinolizidine alkaloid isolated

from the seeds of Cytisus laburnum L., has been used to treat

tobacco dependence in Eastern Europe since the 1960s.

Compound 21 is an α4β2-nAChR partial agonist (Ki,α4β2 = 2

nM) and an α3β4 (Ki,α3β4 = 480 nM) and α7 (Ki,α7 = 5890 nM)

full agonist that shows antidepressant-like activities in several

rodent models,95 presumably mediated by a reduction of

neuronal activity in the basolateral amygdala.96 Compound 21

(10 μM) was reported to exhibit 56% of the response relative to

that of compound 10 and to inhibit 30% of the current evoked by

compound 10 (10 μM) in Xenopus oocytes expressing human

α4β2-nAChRs.97 However, it was reported to have unfavorable

side effects, which include nausea, vertigo, abdominal pain,

respiratory stimulation, and muscle weakness.98 Mineur et al.

observed that compound 21 was not tolerated by mice at a dose

of >1.5 mg/kg.95 Additionally, the poor absorption and brain

penetration94,99−101 of compound 21 may also limit its

application as a clinical antidepressant.
(1R,5S)-9-(Pyridin-2-yl)-1,2,3,4,5,6-hexahydro-8H-1,5-

methanopyrido[1,2-a][1,5]diazocin-8-one, 22.
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(1R,5S)-11-Bromo-1,2,3,4,5,6-hexahydro-8H-1,5-
methanopyrido[1,2-a][1,5]diazocin-8-one, 23.

SAR studies of cytisine analogues revealed that phenyl ring
replacements of the pyridone ring of compound 21 reduced the
binding affinities and functional efficacies.97 Substitution of 21 at
the C-3 (−CHCH2,

102 −NO2,
103 or pyridinyl95), C-4

(−CH3),
102 or C-5 (-Br)78 position could lead to the same or

improved α4β2-nAChR binding affinity, whereas substitution at
the piperidine nitrogen,97,103,104 the C-3 position (aromatic
rings),102 or at the C-12 position (−CO2CH3 or
−COCH2CH3)

102 reduced affinity. Introduction of substituents
on the piperidine ring nitrogen,97 C-4 (−CH3 or −CH2OH),

102

or the C-5 (−NO2)
103 position increases the selectivity for α4β2

receptor. Among these substituted cytisine analogues, 3-(2-
pyridyl)cytisine (22)95 and 5-bromocytisine (23)95 were further
tested in mouse antidepressant efficacy models. Both com-
pounds displayed high affinity at α4β2*-nAChRs (Ki,α4β2* = 0.9
for 22 and 0.3 nM for 23), whereas compound 22 was found to
show lower affinities at α3β4*-nAChRs and α7*-nAChRs
(Ki,α3β4* = 119 nM and Ki,α7 = 1100 nM for 22 vs Ki,α3β4* = 3.8
nM and Ki,α7 = 28 nM for 23). In electrophysiology assays,
compound 22 activates both HS and LS α4β2*-nAChRs
(EC50,HS = 12 nM and EC50,LS = 31 nM) expressed in oocytes
with low efficacies (less than 10% relative to the efficacy of ACh
at both HS and LS receptors) while exhibiting little agonism at
α3β4*.95 In the same assays, compound 23 activated both HS
and LS α4β2*-nAChRs with similar potencies (EC50,HS = 13 nM
and EC50,LS = 15 nM) and efficacies (17% relative to ACh). A
comparison of binding and functional data for compound 21 and
its selected analogues are presented in Table 1. The

antidepressant-like effects of compound 22 were demonstrated
in the TST (0.6 mg/kg, but not at 0.3 or 0.9 mg/kg), FST (0.3−
0.9mg/kg), and chronic NSF tests (15 days at 0.3 mg/kg, but not
at 0.6 mg/kg) in C57BL/6 mice. On the other hand, compound
23 (0.3−1.2 mg/kg) failed to show any significant effects in the
same tests 30 min postintraperitoneal injection.95 It has been
suggested that the lack of efficacy of compound 23 was likely due
to the low brain penetration, as 50 ng of the compound in 1 μL of
artificial cerebrospinal fluid showed a significant antidepressant-
like effect in the TST when administered centrally.

(1R,5S)-7-(Trifluoromethyl)-2,3,4,5-tetrahydro-1H-1,5-
methanobenzo[d]azepine, 16. (1S,5R)-7-(Trifluorometh-
yl)-2,3,4,5-tetrahydro-1H-1,5-methanobenzo[d]azepine,
2 5 . ( 6R , 1 0 S ) - 7 , 8 , 9 , 1 0 - T e t r ahyd ro - 6H - 6 , 1 0 -
methanoazepino[4,5-g]quinoxaline, 2. Inspired by mor-
phine and its simplified analogues [3.3.1]- and [3.2.1]-bicyclic
benzomorphans, Coe et al. identified the simplified cytisine
analogue, benzazapine 24,105 as a nicotinic antagonist with a Ki
value of 20 nM. Attachment of a trifluoromethyl group to the C-4
position of benzazapine 24 gives 16 and CP-601932 (25)78

(Figure 6). Compound 16 is a selective α4β2-nAChR partial
agonist with weaker activity at the α3β4-nAChRs (Ki,α4β2 = 1.2
nM vs Ki,α3β4 = 102 nM),78 whereas its enantiomer, 25, shows
similar affinities at both receptor subtypes, with Ki values of 21
nM and lower affinities for the α6- and α7-nAChR subtypes (Ki >
300 nM).106,107 Compound 16 decreased the time spent
immobile in the FST at 0.75, 1, and 1.5 mg/kg, whereas no
significant effect was found in the TST at the same doses.78

Moreover, compound 16was found to be relatively safe and well-
tolerated in phase 1 single- andmultiple-dose studies, but it failed
to show a statistically significant change on the primary efficacy
scale in favor of the drug when used in the augmentation of
antidepressant therapy in major depression in a phase 2 clinical
study.108

Nitration of benzazapine 24 in the presence of 2 equiv of
nitronium triflate (CF3SO2O

−NO2
+) in dichloromethane

afforded the 4,5-dinitrated benzazapine 26105 with an unexpected
regioselectivity (the meta-isomer was found to be less than 10%
of the mixture). Reduction of 26 to the diamine, condensation
with glyoxal, and deprotection followed by salt formation
provided compound 2 (Figure 6).105 This achiral quinoxaline 2
is the most publicized cytisine analogue, which is known as
varenicline. Its tartrate salt has been launched and marketed by
Pfizer for smoking cessation in the U.S. (Chantix), Canada,
Europe, and other countries (Champix). Compound 2 is a
potent partial agonist at α4β2*-nAChRs, with a Ki value of 0.4
nM and an agonist efficacy of 40−60% of that of compound
10.109,110 In Xenopus laevis oocytes expressing α4β2-nAChRs,
compound 2was found to have an EC50 of 2.3 μMand an efficacy
of 13.4% relative to that of ACh.109 It potently blocks compound
10 binding to α4β2*-nAChRs and produces a sustained increase
in dopamine release to 60% of the maximal effect of compound
10 (188% at 0.32 mg/kg sc).110 In addition, 1 mg/kg po
compound 2 reduced the dopamine-enhancing effects of a
subsequent dose of 0.32 mg/kg sc compound 10 to the level of
the effect of compound 2 alone.110 In a SPECT imaging study,
compound 2 (0.5 mg) was found to completely saturate α4β2*-
nAChRs in human brain.111 The dissociation half-life of
compound 2 is about 5.4 h in a mouse ex vivo receptor
occupancy study.38 Compound 2 alone has antidepressant-like
effects in the FST and was able to augment the effects of
compound 5 when administered in combination.112 It enhanced
the mood and cognitive function associated with compound 10
withdrawal in patients in clinical trials for smoking cessation.113

In an 8 week open-label study, compound 2 augmented the
effects of traditional antidepressants in depressed smokers who
derived minimal benefit from standard antidepressant treat-
ment.12 Recently, studies on a larger scale of community
volunteers who wanted to quit smoking revealed that 12 week
administration of compound 2 (0.5 mg/day for days 1−3
followed by 0.5 mg twice a day for days 4−7 and 1 mg twice a day
thereafter) was coupled with a generalized suppression of

Table 1. Binding Affinities and Maximal Responses and
Potencies of Compounds 2 and 21−23 with Respect to
Activation of nAChRs Expressed in Oocytes95,101

α4β2 activation α4β2 inactivation

ID ref
LS

efficacy
HS

efficacy

LS
EC50
(nM)

HS
EC50
(nM)

LS IC50
(nM)

HS
IC50
(nM)

ACh 95 100% 100% 73 1.7
2 101 22% 1400 50 000 70
21 101 6.5% 2000 28 000 50
22 95 3% 8% 31 12
23 95 17% 17% 15 13
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depression compared with that of the placebo-controlled
treatment.114

■ A-85380 AND ANALOGUES
(S)-3-(Azetidin-2-ylmethoxy)pyridine, 27.

(S)-3-(Azetidin-2-ylmethoxy)-5-iodopyridine, 12.

The pyridine ether-based ligands, in which a CH2O linker is
inserted between the pyrrolidine ring (or in case of its analogues,
an azetidine ring) of compound 10 and its pyridine ring have
attracted considerable interest as α4β2-nAChR agonists due to
their high potency.115−118 A-85380 (27)119 is a 3-pyridyl ether
that exhibits both high potency and selectivity for β2-containing
nAChRs, primarily α4β2* in brain (Ki,α4β2* = 0.02−0.05 nM for
rat brain receptors and 0.04 nM for human brain receptors)
relative to that of human α7-nAChRs (Ki,α7 = 148 nM) or
muscle-type α1β1γδ-nAChRs (Ki,α1β1γδ = 314 nM).119,120

Functionally, compound 27 acts as a potent activator of both
human α4β2-nAChRs (EC50 = 0.7 μM) and ganglionic α3β4*-
nAChRs (EC50 = 0.8 μM), the effects of which are blocked by
pretreatment with compound 1. In the FST, compound 27 was
found to have antidepressant-like effects that could be blocked by
pretreatment with the nAChR antagonists compounds 1 and 18,
as well as by the nonselective serotonin receptor antagonist
methiothepin, suggesting that compound 27 exerts its effects via
neuronal nicotinic receptor activation of serotonergic path-
ways.119,121 As exemplified by compound 12120 (Ki,α4β2* = 0.01
nM), introduction of a halogen substituent at the C-2 (fluoro
only), C-5, or C-6 position of compound 27 leads to ligands that
retain subnanomolar affinity for the α4β2*-nAChRs, as
measured by radioligand binding assays utilizing rat brain
membrane preparations.120 Similar to compound 27, 12 was
also found to decrease immobility in the mouse FST.38 Recently,

β2*-nAChR availability was found to be decreased across brain

regions in depressed patients compared to that of healthy

subjects using SPECT with the β2*-selective radioligand tracer

[123I]12.39 A unifying explanation of these effects stems from the

idea that desensitization and antagonism provide similar end

points for agonists and antagonists. However, because agonists

have an acute activation phase, behavioral assays may measure

effects due to activation and/or inactivation of nAChRs. In this

context, one would expect coadministration of an antagonist to

reduce the behavioral signature of an agonist administered alone.

More complicated explanations involving multiple nAChR

subtypes also can be made, but they are highly speculative.
(S)-5-(Azetidin-2-ylmethoxy)-3-methylisoxazole, 28.

Replacement of the pyridine core of these ether-based ligands

with a methylisoxazole group led to compound 28, which binds

to α4β2-nAChRs with higher affinity than to the α3β4-nAChRs

(Ki,α4β2 = 4.6 nM vs Ki,α3β4 = 692 nM).122 The functional potency

of compound 28 (1.2 μM) at the α4β2-nAChR is similar to that

of compound 2 (1.4 μM), whereas the efficacy of compound 28

is higher (110% vs 53%) in cells heterologously expressing a

mixture of HS and LS α4β2-nAChRs (Table 2). Broad screening

showed that this compound was highly selective for nAChRs and

did not have significant binding affinity to the other 45

neurotransmitter receptors and transporters tested. In the

mouse FST, compound 28 was found to decrease immobility

at 1−5 mg/kg i.p. and 5 mg/kg po. This compound showed no

significant hERG or CYP (1A2, 2B6, 2C9, 2C19, 2D6, and 3A4)

inhibition at 10 μM. Between 53.4 and 73.7% of compound 28

was found to remain unchanged after 60 min incubation with

mouse or human liver microsomes (1 and 10 μM).122

Figure 6. Selected nicotinic benzazapine analogues.
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(S)-6-(5-(Azetidin-2-ylmethoxy)pyridin-3-yl)hex-5-yn-
1-ol, 11.

Compound 11, an analogue of compound 27 having an alkynyl
substituent attached to the 5-position of the pyridine ring, was
identified as a highly potent full agonist at HS α4β2-nAChR and a
low efficacy agonist at LS nAChR (Table 2).126 Compared with
compound 27, the selectivity of compound 11 at α4β2- relative
to ganglionic α3β4*- and homomeric α7-nAChRs is greatly
improved.127,128 Compound 11 potently binds to α4β2-nAChRs
(Ki = 0.4 nM) but not to α3β4*- (Ki > 104 nM) or α7-nAChRs
(Ki > 104 nM). Ex vivo receptor occupancy in the thalamus
showed prolonged receptor occupancy. The dissociation half-life
of compound 11 (8−24 h) was found to be significantly longer
compared with that of compound 12 (3−5 h),38 which is likely
due to the presence of the side chain in compound 11.
Robust antidepressant-like effects of compound 11 were

observed in the FST, TST, and NIH assays, with no effect on
baseline locomotor activity when given chronically.35,38,129

Compound 11 (1 mg/kg) significantly reduced immobility 2,
3, and 4 h but not 5 h after administration in the mouse FST.
Repeated administration of compound 11 in the FST at 1 and 3

mg/kg doses for 2 weeks did not result in tolerance. Moreover, its
activity in the FST was completely blocked by either compound
18 or compound 1,38 suggesting that activation of nAChRs may
responsible for the activity of compound 11 in this behavioral
model of antidepressant efficacy. In addition, β2 subunit
knockout mice did not show any antidepressant response to
compound 11 in the FST, suggesting that interaction with β2*-
nAChRs plays a key role in the behavioral activity of compound
11.38 Stimulation of dopamine and noradrenaline release in rat
striatal slices was observed with compound 11, an effect that was
blocked by nicotinic antagonists 18 and compound 1.126 In
addition, the α6*-selective antagonist α-conotoxin MII (100
nM) reduced the maximum effect of compound 11-induced
dopamine release in rat by 48%, suggesting that α6*-nAChRs
may be involved in the antidepressant-like effects of compound
11.126

Compound 11 has been reported to have other behavioral
effects including increased hypothermia.130,131 It is unlikely that
the hypothermic effects of compound 11 are related to its
antidepressant-like effects observed in the FST. Although
reduced, β2 knockout mice still showed a hypothermic response
to compound 11,131 whereas the antidepressant-like effects of
compound 11 was completely abolished in β2 knockout mice.38

The hypothermic effects of compound 11 (1 mg/kg) returned to
baseline approximately 2 h postinjection,132 whereas the
antidepressant-like effect persisted up to 4 h.38 Compound 11
has shown additional beneficial behavioral effects in animal
models including analgesia,133 improving attentional function
after disruption with compound 3 or MK-801,132,134 reducing
anxiety following withdrawal from chronic compound 10,135

decreasing body weight gain following chronic treatment,136 and
decreasing compound 10 self-administration and alcohol
consumption.137−139 Interestingly, unlike compound 10 or
compound 2, compound 11 did not upregulate nAChR in the
brain after chronic administration140 and did not maintain
receptor upregulation following chronic compound 10 admin-
istration,136 providing further evidence that compound 11 may
exert its behavioral effects through a unique mechanism.

2-((1R,2S)-2-(5-(((S)-Azetidin-2-yl)methoxy)pyridin-3-
yl)cyclopropyl)ethan-1-ol, 29.

Table 2. Functional Potencies and Efficacies of Ligands 2, 10,
11, and 28−31: Agonism and Inactivation at Human α4β2-
nAChRs122−125

agonism inactivation

compound
EC50
(nM)

efficacy
(%)a

efficacy HS
(%)b

IC50
(nM)

efficacy
(%)

2 1400 53 110 85
11 5.8 55 100 4.8 37
28 1200 110 92 169 78
29 10 21 92 9.4 63
30 42 22 61 31 68
31 8.4, 2300c 21 45 58 85
10 290 88 110 430 93

aThe efficacies were measured in a mixture of HS and LS α4β2-
nAChRs. bThe efficacy values were extrapolated using compound 11
defined as a full agonist at the HS α4β2-nAChR. cCompound 31
activates both HS and LS α4β2-nAChRs with sufficient selectivity to
distinguish activity at each subtype. Efficacy of 31 at LS α4β2-nAChRs
is approximately 17%.

Table 3. Binding Affinities of Compounds 10, 11, and 27−31 at Seven nAChR Subtypes122−125

Ki (nM)a

compound α2β2 α2β4 α3β2 α3β4 α4β2 α4β4 α4β2*b selectivity α4β2/α3β4

11 >10 000 0.4 0.9 24 000
27 0.05 0.05
28 4.3 311 8.7 692 4.6 86.0 12.0 150
29 0.1 249 3.0 6520 0.1 82.6 0.5 65 200
30 1.0 935 15.4 >10 000 0.6 1790 3.0 >16 300
31 1.7 559 40.6 5640 1.2 16.9 1.4 4700
10 5.5 70 29 260 4.9 23 9.8 53

aKi values were determined by competition for [3H]epibatidine binding sites using radioligand binding. bα4β2*, prepared from rat forebrain.
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(S)-2-(5-(5-(Azetidin-2-ylmethoxy)pyridin-3-yl)isoxazol-
3-yl)ethan-1-ol, 30.

(S)-N-Phenyl-5-(pyrrolidin-2-ylmethoxy)pyridin-3-
amine, 31.

Replacing the acetylene bond of compound 11with a substituted
cyclopropane or an isoxazole ring lead to compounds 29 and 30,
respectively.63,124,125,141 Introduction of different amino groups
at the 5-position of the pyridine ring yielded a series of 3-alkoxy-
5-aminopyridine derivatives exemplified by compound 31.123

These compound 11 analogues (29−31) act as α4β2-nAChRs
partial agonists (Table 2) with low nanomolar binding affinities
(Ki = 0.1−1.2 nM) and excellent subtype selectivity at β2*- over
β4*-nAChRs (Table 3). Compound 29 has been cocrystallized
with Ct-AChBP, and its binding mode was found to be similar to
that reported for compound 2; both compounds rely on the
presence of two cationic centers spaced ∼5.8 Å from each other
for their binding interactions, including cation−π interactions
with W153 (loop B) and Y201 (loop C) as well as a set of H-
bonds with the backbone atoms of W153 (loop B), Q116 (loop
E), and I128 (loop E). (Figure 7.) The hydroxyethyl group of 29
appears to be flexible and is able to adopt different orientations,
thus highlighting the ability to carry out structural modifications
of this appendage without causing significant alterations in
activity. The antidepressant-like properties of compounds 29−
31 were demonstrated in the classical mouse FST (1−30 mg/
kg). The lack of significant interactions with other neuro-
transmitter receptors and transporters widely distributed
throughout the CNS as well as the favorable preliminary
absorption, distribution, metabolism, excretion, and toxicity
(ADME-Tox) profiles place these specific α4β2-nAChR ligands
in a favorable position to be further studied as new antidepressant
drug candidates.

■ OTHER LIGANDS

(S,E)-5-(5-Isopropoxypyridin-3-yl)-N-methylpent-4-
en-2-amine, 32.

TC-1734 (32) is a potent α4β2-nAChR partial agonist (Ki = 11
nM) and is selective over α7-nAChRs (Ki > 50 000 nM).142

Compound 32 (10 μM) showed no significant inhibition when
tested at 135 other receptor and enzyme systems. In functional
studies, the agonist activity of compound 32 was measured using
a 86Rb+ efflux assay in rat thalamic synaptosomes (α4β2 subtype,
EC50 = 220 nM, efficacy = 57%) and the dopamine-release assay
in striatal synaptosomes (α4β2/α6/α3β2, EC50 = 106 nM,
efficacy = 55%). Compound 32 (up to 100 μM) did not show any
detectable effects at either muscle-type (α1β1γδ) or ganglionic
(α3β4) nAChRs. Compound 32 had favorable pharmacokinetic
and metabolic profiles and was well-tolerated in acute and
chronic oral toxicity studies in various animal species (mice, rats,
and dogs), as well as in a human clinical studies using either
single- or repeated-dose oral administration.143 Compound 32
exhibited antidepressant-like effects in the mouse FST when
administered intraperitoneally, with a significant reduction in
immobility at the minimal dose of 1 μmol/kg, and locomotor
activity was not affected by repeated administration.142 In clinical
trials, compound 32 has been studied in a variety of indications
characterized by varying types and degrees of cognitive
impairment, such as attention deficit/hyperactivity disorder,
mild cognitive impairment, and age-associated memory impair-
ment.144,145 Currently, Targacept is recruiting patients for a
phase 2b study with this compound in order to assess efficacy,
safety, and tolerability in patients with mild to moderate
dementia due to Alzheimer’s disease.146,147

(S)-3-Ethynyl-5-(1-methylpyrrolidin-2-yl)pyridine, 33.

SIB-1508Y (33)148 is a selective α4β2-nAChR partial agonist
(EC50 = 1.8 μM; efficacy = 49% relative to that of compound 10),
having no activity at homomeric α7- or muscle-type α1β1γδ-

Figure 7. X-ray crystal structure of the Ct-AChBP in complex with compound 2 or 29.63
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nAChRs and weak activity at ganglionic α3β4-nAChRs (EC50 =
23 μM; efficacy = 52% relative to that of compound 10).148 In
vitro, compound 33 stimulated dopamine release from slices of
rat striatum prepared from various brain regions, and the effect
was blocked by nAChR antagonists compound 1 or compound
18.149 On the other hand, compound 33 was found to show
relatively weak effects on NE or 5-HT release. Subchronic or
chronic administration of compound 33 demonstrated robust
antidepressant-like effects in the learned helplessness model in
rat, which were significantly blocked by nAChR antagonist
compound 1 in the subchronic study.150 In addition, compound
33 was also found to improve cognitive and motor function in
monkey models of Parkinson’s disease.151,152

1-(5-Chloropyridin-3-yl)-1,4-diazepane, 34.

NS3956 (34)23 was found to be a partial agonist at human α4β2-
nAChRs (Ki = 0.36 nM) with good selectivity (Ki,α7 = 399 nM
and Ki,α1 = 944 nM). In the oocyte expression system, this
compound was very potent at HS α4β2-nAChRs (EC50 = 11
nM), with an efficacy of 47% of the response to a maximally
efficacious concentration of ACh.23 At LS α4β2-nAChRs,
potency and efficacy were both reduced, with an EC50 of 604
nM and an efficacy of 38% relative to that of ACh. In reference to
the subtype selectivity and off-target activity, actions at α7- or
α3β4-nAChRs of compound 34 were weak or absent, and it did
not show any significant interactions with the monoamine
transporters, including 5-HT, DA, and NE. Moreover,
compound 34 exhibited an ED50 value of 0.033 mg/kg in the

[3H]epibatidine binding assay when tested in vivo, indicating
that it was able to cross the BBB. Interestingly, compound 34
(0.3−3.0 mg/kg) was shown to be inactive in the mouse FST
when tested alone, whereas when tested as a combination
therapy, it significantly enhanced the antidepressant-like effects
of the SSRI compound 4 and the SNRI compound 6 at 1.0 mg/
kg.23 These results suggest the possibility of a synergistic
interaction between nicotinic agonism and the action of
antidepressant medications. In vitro binding studies along with
the detailed interactions with Ls-AChBP revealed that a bromine
substitution at the 6-position increased the efficacy at HS α4β2-
nAChR, and a relatively small substitution, such as chloro,
bromo, or ethoxy, at the 5-position of the pyridine ring in a 1-
(pyridin-3-yl)-1,4-diazepane scaffold improved selectivity for
α4β2- over α7-nAChRs.57

(R)-4-Chloro-N-(quinuclidin-3-yl)benzamide, 35.

PNU-282987 (35)153 is a potent and selective α7-nAChR
agonist (Ki = 26 nM)with good selectivity over α3β4- or α1β1γδ-
nAChRs (≥60 μM). Compound 35 did not show significant
interactions with monoamine, muscarine, glutamate, or GABA
receptors when tested at concentrations of 1 μM, with the
exception of the 5-HT3 receptor, where it showed a Ki value of
930 nM. Furthermore, compound 35 was able to evoke whole-
cell currents from cultured rat hippocampal neurons and
enhance GABAergic synaptic activity in hippocampal slices.153

Compound 35 (10−20 mg/kg) show no antidepressant-like
activity when tested alone, but it significantly enhanced the

Table 4. Clinical and Preclinical Evidence for the Viability of Targeting nAChRs in Depression

ID receptor subtype selectivity antidepressant/anxiolytic results ref

2 α4β2 partial agonist, less potent α3β4 and
α7 full agonist

Improved FST; augmented the antidepressant effects in depressed smokers 12, 38, and
109−114

11 α4β2 partial agonist Improved FST, TST, and NIH 35, 38, and
126−129

12 α4β2 full agonist Improved FST 38, 39, and 120
13 Nonselective noncompetitive antagonist Improved FST, social interaction test, light/dark assay; failed phase 3 clinical study as add-on in

treating resistant patientsdark assay
19, 21, 50, 51, and
66−72

16 α4β2 partial agonist Improved FST Failed as augmentation of antidepressant therapy for major depression in phase
2 clinical study

78 and 108

18 α4β2 competitive antagonist Improved FST and TST 22 and 87−89
19 α7 antagonist Improved FST and TST 89−92
20 α4β2 antagonist Antidepressant and anxiolytic like response in preclinical studies 93
21 α4β2 partial agonist, α3β4 and α7 full

agonist
Antidepressant-like activities in several rodent models; safety issues, poor absorption and
limited brain penetration

94−101

22 α4β2 partial agonist Improved FST, TST, and chronic NSF 95 and 97
27 α4β2 partial agonist, α3β4 agonist Improved FST 119−121
28 α4β2 partial agonist, less potent α3β4

agonist
Improved FST 122

29 α4β2 partial agonist Improved FST 63 and 125
30 α4β2 partial agonist Improved FST 124 and 141
31 α4β2 partial agonist Improved FST 123
32 α4β2 partial agonist Improved FST 142−147
33 α4β2 partial agonist Improved learned helplessness 148−152
34 α4β2 partial agonist No effect alone in FST; enhanced the antidepressant-like effect of SSRI (compound 4) and

SNRI (compound 6)
23 and 58

35 α7 agonist No effect alone at FST; enhanced the antidepressant-like effect of SSRI (compound 4) and
SNRI (compound 6)

23 and 153
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antidepressant-like effect of the SSRI compound 4 or the SNRI
compound 6.23

■ CONCLUSIONS
Considerable evidence supports the hypothesis that hyper-
activity of the cholinergic system over that of the adrenergic
system leads to depression. Clinical and preclinical studies
provide evidence that modulating nAChRs may lead to
antidepressant effects when given alone and in combination
with traditional antidepressants (summarized in Table 4).
Compound 10 has a clear and long-recognized activity as an
antidepressant, and a childhood history of depression elevates
the risk for those individuals becoming users of tobacco products,
reflecting self-medication with compound 10 as a “street”
antidepressant.154 It is difficult to determine the critical drug
features that are responsible for compound 10’s antidepressant
activity, given the pharmacodynamic and pharmacokinetic
variables and the various effects of compound 10 on nAChRs
in vitro. Our understanding is incomplete about where and which
nAChR subtypes are involved in excitatory neurotransmission
and/or in modulation of neurotransmission mediated by
monoamines or other chemical messengers implicated in
mood regulation. Pharmacokinetics bring additional uncertain-
ties with regard to drug availability and efficacy in vivo and
translation of ligand activities in vitro to those in vivo. For
example, effects of several agonists in animal models are
attenuated by coadministered antagonists, suggesting that
nAChR activation contributes to some antidepressant-like drug
effects. Antagonists alone also elicit antidepressant-like effects,
suggesting that inhibition of nAChR function through processes
such as desensitization also contribute to antidepressant efficacy,
consistent with the cholinergic/adrenergic hypothesis. More-
over, compound 10 and many nicotinic ligands have limited
selectivity across nAChR subtypes or subtype isoforms, meaning
that they could have a matrix of effects across subtypes as well as
on the activation−inactivation axis. There still is a need for
reliable assays for several nAChR subtypes, in vitro, complicating
the interpretation of results and strategies in identification of
promising compounds. It is also important to be mindful that
behavioral tests in animals measure changes in behavior that
correlate with clinical efficacies of currently available anti-
depressants and do not necessarily predict effective antidepres-
sant activity in humans, particularity in treatment-resistant
patients.
Recent phase 3 findings indicated that the nAChR antagonist

compound 13, the 2S-(+)-enantiomer of the broad-spectrum,
noncompetitive nAChR antagonist, compound 1, did not show
efficacy as an adjunct therapy for patients that were non-
responders to traditional antidepressant treatment. This suggests
that simple antagonism of what is likely to be a number of
nAChR subtypes has an insufficient antidepressant effect.
However, the lack of nAChR subtype specificity and the marginal
free concentration in brain are also significant issues for
compound 13 that may have contributed to the negative
outcomes in the phase 3 trials. Those outcomes are not likely to
be accurate predictors of effects of nicotinic full or partial agonists
with greater nAChR subtype selectivity.
Designing a compound that has actions more like those of

compound 10 (short-lived nAChR agonismmediated by binding
to the orthosteric sites followed by receptor desensitization) may
produce a more efficacious antidepressant. Factors outlined
above need to be addressed toward optimization of ligand action
of the desired type and at the appropriate nAChR subtypes.

These challenges aside, preclinical evidence shows potent
antidepressant-like efficacy of compound 11 and some of its
analogues in the mouse FST. These ligands have high selectivity
at α4β2*-nAChR over other nAChR subtypes and act as partial
agonists at the (α4)2(β2)3-nAChR isoform. These findings
suggest and support the hypothesis that ligands selectively
targeting the (α4)2(β2)3-nAChR isoform may hold significant
promise as efficacious antidepressants. These ligands would offer
advantages over nicotinic agents that are relatively nonselective
and produce adverse side effects through actions at peripheral
nAChRs or at central non-α4β2*-nAChRs.
Aside from their selectivity for α4β2*-nAChR, compound 11

and its analogues have favorable pharmacokinetic and toxico-
logical profiles. Advancement of the best of these ligands to and
through clinical trials still requires substantial investment of effort
and capital. Our work funded under a National Cooperative
Drug Discovery and Development program has provided
important impetus to such advancement, but private sector
engagement and commitment to treatment of depression or
other psychiatric disorders will be necessary. This poses an
additional challenge given the perhaps more proximal benefit of
attention on new drugs to treat diseases of aging and metabolism
and acute/chronic pain than to treat psychiatric disorders that are
poorly understood, perhaps because of their etiopathogenic
heterogeneity. If nAChR ligands are to be prescribed as
antidepressants, then it may happen through the inverse route
that compound 7 took to be prescribed as a smoking-cessation
aid. α4β2*-selective agonists and partial agonists that are
attractive as potential antidepressants may also be efficacious as
smoking-cessation aids. It is entirely possible that this class of
compounds will first reach the clinic as an improvement over
compound 2 and that antidepressant efficacy is ascertained
thereafter. Regardless, studies with α4β2*-nAChR-selective
ligands have already contributed to an improved understanding
about nAChR subtypes and isoforms, and elucidation of roles
played by the nicotinic system in the effects of these ligands
certainly have illuminated the neurobiology underlying depres-
sion.
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