Identification Of Novel α4β2-Nicotinic Acetylcholine Receptor (Nachr) Agonists Based On An Isoxazole Ether Scaffold That Demonstrate Antidepressant-Like Activity

Li Fang Yu
Werner Tuckmantel
J. Brek Eaton
Barbara Caldarone
Allison Fedolak

See next page for additional authors

Follow this and additional works at: https://scholar.barrowneuro.org/neurobiology

Recommended Citation
Yu, Li Fang; Tuckmantel, Werner; Eaton, J. Brek; Caldarone, Barbara; Fedolak, Allison; Hanania, Taleen; Brunner, Dani; Lukas, Ronald J.; and Kozikowski, Alan P., "Identification Of Novel α4β2-Nicotinic Acetylcholine Receptor (Nachr) Agonists Based On An Isoxazole Ether Scaffold That Demonstrate Antidepressant-Like Activity" (2012). Neurobiology. 230. https://scholar.barrowneuro.org/neurobiology/230

This Article is brought to you for free and open access by Barrow - St. Joseph's Scholarly Commons. It has been accepted for inclusion in Neurobiology by an authorized administrator of Barrow - St. Joseph's Scholarly Commons. For more information, please contact molly.harrington@dignityhealth.org.
Authors
Li Fang Yu, Werner Tuckmantel, J. Brek Eaton, Barbara Caldarone, Allison Fedolak, Taleen Hanania, Dani Brunner, Ronald J. Lukas, and Alan P. Kozikowski
Identification of Novel α4β2-Nicotinic Acetylcholine Receptor (nAChR) Agonists Based on an Isoxazole Ether Scaffold that Demonstrate Antidepressant-like Activity

Li-Fang Yu,† Werner Tückmantel,§ J. Brek Eaton,§ Barbara Caldarone,§ Allison Fedolak,§ Taleen Hanania,§ Dani Brunner,## Ronald J. Lukas,§ and Alan P. Kozikowski*,†

†Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
‡Division of Neurobiology, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, Arizona 85013, United States
§PsychoGenics, Inc., 765 Old Saw Mill River Road, Tarrytown, New York 10591, United States
#Department of Psychiatry, Columbia University, NYSPI, 1051 Riverside Drive, New York 10032, United States

ABSTRACT: There is considerable evidence to support the hypothesis that the blockade of nAChR is responsible for the antidepressant action of nicotinic ligands. The nicotinic acetylcholine receptor (nAChR) antagonist, mecamylamine, has been shown to be an effective add-in in patients that do not respond to selective serotonin reuptake inhibitors. This suggests that nAChR ligands may address an unmet clinical need by providing relief from depressive symptoms in refractory patients. In this study, a new series of nAChR ligands based on an isoxazole-ether scaffold have been designed and synthesized for binding and functional assays. Preliminary structure–activity relationship (SAR) efforts identified a lead compound 43, which possesses potent antidepressant-like activity (1 mg/kg, IP; 5 mg/kg, PO) in the classical mouse forced swim test. Early stage absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) studies also suggested favorable drug-like properties, and broad screening toward other common neurotransmitter receptors indicated that compound 43 is highly selective for nAChRs over the other 45 neurotransmitter receptors and transporters tested.

INTRODUCTION

Neuronal nicotinic acetylcholine receptors (nAChRs) are pentamers assembled from varying combinations of subunits (α2−α10, β2−β4) and belong to the ligand-gated ion channel superfamily of neurotransmitter receptors.1−3 These receptors are broadly distributed in the central and peripheral nervous systems, where they modulate many processes, such as ganglionic transmission regulated by α3/4*-nAChRs (the * indicates that subunits other than those specified are known or possible partners in the closed assembly), neuroprotection of dopaminergic pathways and nociception mediated by α4*-nAChRs, as well as learning, memory, and addiction by β2*-nAChRs.4−6 Over the past two decades, many compounds targeting nAChRs have been tested in various stages of clinical trials.7 However, only one new chemical entity, varenicline (1), has been launched and marketed as a potent partial agonist at the α4/2-nAChR for smoking cessation (Figure 1).8−10

Given nAChR subtype diversity and their involvement in the modulation of a host of neurotransmitter systems, nicotinic ligands have the potential to treat a multitude of central nervous system (CNS)-related dysfunctions, including chronic depression.8,11 There is considerable evidence to support the hypothesis that the blockade (antagonism or receptor desensitization) of nAChR is responsible for the antidepressant action of nicotinic ligands.12−14 In particular, clinical studies have shown that the cholinesterase inhibitor, physostigmine, produces depressive symptoms in humans,15 whereas mecamylamine16 and the muscarinic antagonist scopolamine17,18 relieve depressive symptoms in humans. Additionally, preclinical studies provide support for the hypothesis that increased cholinergic activity leads to depressed mood states. Pliniders sensitive rats, a line selectively bred for increased cholinergic sensitivity, exhibit several depressive-like behaviors.19,20 Moreover, administration of the nicotinic antagonist mecamylamine elicits an antidepressant-like effect in the mouse forced swim test, and this effect is reduced when the β2 subunit gene is knocked out.11 The same effects were also observed in response to the tricyclic antidepressant amitriptyline, strongly suggesting that β2*-nAChRs are involved in the antidepressant efficacy of nicotinic ligands.21 The α4/β2-nAChR is the predominant subtype in the vertebrate CNS, and the α4/β2 nicotinic agonists...
effect, isoxazole-containing nicotinic ligands remain an exciting area of investigation. Substituted isoxazoles were also successfully applied in optimization studies of compound 4. Replacement of the chloropyridyl group in compound 4 with a methylisoxazolyl group led to epiboxidine (7) \(^{56,40} \) which was approximately 10-fold less potent than compound 4 but 17-fold more potent than compound 6 in the displacement of \[^{3}H\]nicotine at the \(\alpha 4/2 \)-nAChR from rat cerebral cortical membranes. Epiboxidine retained analgesic activity in mice at 25 mg/kg compared to compound 4 at 10 mg/kg, with greatly reduced toxicity. Furthermore, a series of 3-(5-isoxazolyl)-methylene-1-azabicyclic compounds (8) were synthesized as potent nicotinic ligands. \(^{41}\)

Pyridyl ethers, in which a \(\text{CH}_2\text{O} \) linker is inserted between compound 3’s pyrrolidine (or in analogues, azetidine) ring and its pyridine ring, have attracted considerable interest as \(\alpha 4/2 \)-nAChR agonists because of their high potency. \(^{42,43}\) For example, compound 9 possesses a \(K_i \) value of ca. 50 pM and a high efficacy of 163% compared to compound 3 at the human \(\alpha 4/2 \)-nAChR. \(^{44}\) ABT-594 (10), a nAChR agonist, was advanced to a Phase II clinical trial for the treatment of chronic and neuropathic pain with a potency 50 times that of morphine but was discontinued due to an unacceptably narrow therapeutic index. \(^{45,46}\) ABT-089 (11) is currently under investigation as a replacement for compound 6 that has an improved preclinical therapeutic index and a better pharmacokinetic profile. It has gone through Phase II clinical studies for cognitive dysfunction. \(^{47,48}\) Upon the basis of the precedent quoted above, we anticipated that an isoxazole moiety could be used as a readily accessible replacement for the pyridine core in the design of new nicotinic ligands. Herein, we report the synthesis and pharmacological evaluation of a novel series of nAChR ligands based on an isoxazole core in combination with the \(\text{CH}_2\text{O} \) linker ("isoxazole ethers"; Figure 2). Selected compounds were further assessed in behavioral tests, in a broad screening panel of common CNS neurotransmitter receptors and transporters, as well as in preliminary in vitro ADME-Tox studies.

RESULTS AND DISCUSSION

Chemistry. First, we designed compounds that could be accessed from readily available starting materials to ascertain whether an isoxazole moiety could replace the pyridine core in the previously published pyridine ether nicotinics developed by Abbott. The 3-alkoxyisoxazoles 18–21 were synthesized in 3–6 steps utilizing the synthetic routes shown in Scheme 1. Intermediate 16 was formed via the Mitsunobu reaction of Boc-protected 2-(S)-azetidinylmethanol (15) and 3-hydroxyisoxazole-5-carboxylic acid methyl ester (14), which was in turn prepared as described in the literature from dimethyl 2-butyne-1,4-dioate (13). The ester 16 was subsequently reduced with \(\text{LiBH}_4 \) to furnish the primary alcohol 17, and this intermediate was carried on to the iodide. The phenyl ether 19 and the aliphatic ethers 20–21 were obtained through nucleophilic
substitution following standard methods. After acidic deprotection and subsequent purification by HPLC, compounds 18–21 were obtained as trifluoroacetates. The number of equivalents of trifluoroacetic acid (TFA) in these non-stoichiometric compounds was determined by elemental analysis. The 5-methylated 3-alkoxyisoxazole 24 was synthesized in the same manner from commercially available 3-hydroxy-5-methylisoxazole 22 (Scheme 1).

The preparation of 5-alkoxyisoxazole ligands proceeded through the common intermediates 29 and 30, which were in turn prepared from the commercially available ester 26 (Scheme 2). Compounds 31, 32, 33, and 43 were synthesized by employing the same strategy as described in Scheme 1. The primary alcohol 29 was transformed to an iodide, followed by nucleophilic substitution with aniline or 4-fluoroaniline to afford the precursors of amine derivatives 34 and 35. Carbamate analogues 34–38 were prepared by reaction of 29 with the corresponding isocyanates. The fluoromethyl derivative 39 was obtained by treatment of alcohol 29 with (diethylamino)sulfur trifluoride. Subsequent Boc deprotection of the precursors yielded the desired final compounds 34–39.

In Vitro Characterization—Radioligand Binding Studies. In vitro binding affinities of the five 3-alkoxyisoxazoles (18–21, 24) were determined by the standard [3H]epibatidine binding assay at seven rat nAChR subtypes (Table 1). While this initial set of compounds showed weak binding to all seven nAChR subtypes tested, compound 18 exhibited a moderate affinity for α4β2- and α4β2*-nAChRs.
It is commonly accepted that the essential pharmacophore of nicotinic ligands consists of a cationic center (e.g., quaternized or protonated nitrogen) and a hydrogen-bond acceptor (e.g., a nitrogen atom in the case of pyridine-containing ligands). The inactivity of our first batch of isoxazole-ether compounds is possibly a result of misalignment of these two key elements. Therefore, to align these pharmacophoric elements differently, possibly a result of misalignment of these two key elements.

Table 1. Binding Affinities of 3-Alkoxyisoxazole Ligands at Seven Rat nAChR Subtypes

<table>
<thead>
<tr>
<th>ID</th>
<th>X</th>
<th>(a\beta2) (nM)</th>
<th>(a\beta4) (nM)</th>
<th>(a\beta2) (nM)</th>
<th>(a\beta4) (nM)</th>
<th>(a\beta2) (nM)</th>
<th>(a\beta4) (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>OH</td>
<td>337</td>
<td>>10^4</td>
<td>990</td>
<td>>10^3</td>
<td>176</td>
<td>405</td>
</tr>
<tr>
<td>19</td>
<td>OC,CH_3</td>
<td>34</td>
<td>NA</td>
<td>4100</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>20</td>
<td>OCH_3</td>
<td>34</td>
<td>NA</td>
<td>4100</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>21</td>
<td>OCH_2CH(CH_2)_2</td>
<td>34</td>
<td>NA</td>
<td>4100</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>22</td>
<td>H</td>
<td>34</td>
<td>10^4</td>
<td>6670</td>
<td>>10^4</td>
<td>1950</td>
<td>7380</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>5.5</td>
<td>70.0</td>
<td>29.0</td>
<td>260</td>
<td>4.9</td>
<td>9.8</td>
</tr>
</tbody>
</table>

See Experimental Section. "αβ2*, endogenous receptors prepared from rat forebrain. Besides α4 and β2, other unidentified subunits may also be present. Details are provided in the Experimental Section. The \(K_i\) values for compound 3 are taken from the PDSP Assay Protocol Book. Not active, defined as <50% binding in the primary assay at 10 μM.

Table 2. Binding Affinities of 5-Alkoxyisoxazole Ligands at Seven Rat nAChR Subtypes

<table>
<thead>
<tr>
<th>ID</th>
<th>X</th>
<th>(a\beta2) (nM)</th>
<th>(a\beta4) (nM)</th>
<th>(a\beta2) (nM)</th>
<th>(a\beta4) (nM)</th>
<th>(a\beta2) (nM)</th>
<th>(a\beta4) (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>1</td>
<td>OH</td>
<td>197</td>
<td>>10^4</td>
<td>521</td>
<td>>10^3</td>
<td>137</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>OC,CH_3</td>
<td>47.9</td>
<td>58.0</td>
<td>362</td>
<td>186</td>
<td>23.8</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>OC,CH_3</td>
<td>176</td>
<td>320</td>
<td>809</td>
<td>160</td>
<td>2120</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>NHCH_3</td>
<td>150</td>
<td>144</td>
<td>462</td>
<td>771</td>
<td>75.9</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>NHCH_2F</td>
<td>210</td>
<td>30.3</td>
<td>ND</td>
<td>171</td>
<td>49.0</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>OC(O)NHCH_3</td>
<td>42.3</td>
<td>162</td>
<td>123</td>
<td>1760</td>
<td>19.7</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>OC(O)NHCH_3</td>
<td>157</td>
<td>6570</td>
<td>315</td>
<td>NA</td>
<td>31.2</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>OC(O)NH-C,H_11</td>
<td>126</td>
<td>9970</td>
<td>370</td>
<td>NA</td>
<td>13.1</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>F</td>
<td>11.8</td>
<td>472</td>
<td>17.3</td>
<td>1270</td>
<td>7.3</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>H</td>
<td>4.3</td>
<td>311</td>
<td>8.7</td>
<td>692</td>
<td>4.6</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>H</td>
<td>616</td>
<td>5810</td>
<td>1030</td>
<td>8780</td>
<td>12.9</td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>5.5</td>
<td>70.0</td>
<td>29.0</td>
<td>260</td>
<td>4.9</td>
<td>9.8</td>
</tr>
</tbody>
</table>

See Experimental Section. "αβ2* or α7*, endogenous receptors prepared from rat forebrain. Besides α4, β2, or α7, other unidentified subunits may also be present. Details are provided in the Experimental Section. The \(K_i\) values for compound 3 are taken from the PDSP Assay Protocol Book. ND: not detected. Not active, defined as <50% binding in the primary assay at 10 μM. aThe \(K_i\) values for compound 1 are from ref S1.

It is commonly accepted that the essential pharmacophore of nicotinic ligands consists of a cationic center (e.g., quaternized or protonated nitrogen) and a hydrogen-bond acceptor (e.g., a nitrogen atom in the case of pyridine-containing ligands). The inactivity of our first batch of isoxazole-ether compounds is possibly a result of misalignment of these two key elements. Therefore, to align these pharmacophoric elements differently, and hopefully more appropriately, isoxazoles with a reverse position of their N and O ring atoms were synthesized. As the pyrrolidine analogues (33, 35), carbamates (36, 37, and 38), the 3-methyl derivative (43), and the 3-fluoromethyl derivative (39) were increased 1.8-30-fold compared to the parent alcohol (31). Compound 43 carrying a 3-methyl substituent turned out to have the best affinity for αβ2- and αβ2*-nAChRs with \(K_i\) values of 4.6 nM and 12.0 nM, respectively. All of these compounds have a similar subtype selectivity profile as compound 3 and compound 1; they display selectivity for the α4β2- over the α3β4-nAChR in radioligand binding competition assays. The alcohol (31), methyl derivative (43), fluoromethyl derivative (39), and carbamates (36-38) actually exceed compound 3’s αβ2- over αβ4- selectivity. Among these ligands, the cyclopentylcarbamate (38) exhibits the best selectivity with a \(K_i\) value of 13.1 nM at the α3β4-nAChR and inactivity at the α3β4-nAChR. The aforementioned six compounds also exhibit selectivity for all the other αβ2- or β4-containing subtypes. Their affinities at the α4β2*-nAChR dropped 1.6-13.5-fold compared to those at the α4β2-nAChR, probably due to the existence of additional subunits in the former.

To determine the influence of different heteroalicyclic ring sizes, the pyrrolidine analogues (33 and 44) were also synthesized. Pyrrolidines (33 and 44) retained all of the selectivity exhibited by the corresponding azetidines (32 and 43), but their affinities were reduced at all seven rat nAChR subtypes, which is consistent with previous studies in the pyridine ether series.42
In Vitro Functional Characterization. The most potent α4β2-ergic ligands based on binding assays, 39 and 43, as well as pyrrolidine analogue 44 were selected for evaluation of functional activity using the 86Rb+ ion flux assay in SH-EP1-hr1α4β2, SH-SY5Y (α3/β4*) and TE671/RD cells (Figure 3; Tables 3 and 4). Consistent with the binding data, the pyrrolidines 39 and 43 were found to be more potent than the pyrrolidine 44, both in agonism and functional inactivation.

Table 3. Potencies and Efficacies of Ligand Agonism and Inactivation of Human α4β2-nAChRs

<table>
<thead>
<tr>
<th>compound</th>
<th>EC50 (nM)</th>
<th>efficacy (%)</th>
<th>IC50 (nM)</th>
<th>efficacy (%)</th>
<th>α4/β2</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>1090</td>
<td>93</td>
<td>151</td>
<td>72</td>
<td>7.3</td>
</tr>
<tr>
<td>43</td>
<td>1180</td>
<td>108</td>
<td>169</td>
<td>78</td>
<td>4.6</td>
</tr>
<tr>
<td>44</td>
<td>>3000</td>
<td>>50</td>
<td>1100</td>
<td>69</td>
<td>129</td>
</tr>
<tr>
<td>3</td>
<td>290</td>
<td>88</td>
<td>430</td>
<td>92</td>
<td>4.9</td>
</tr>
<tr>
<td>1</td>
<td>1400</td>
<td>53</td>
<td>~110</td>
<td>~85</td>
<td>0.05</td>
</tr>
</tbody>
</table>

“See Experimental Section for details. The term “inactivation” is used because compounds may be acting to desensitize receptors or as competitive or non-competitive antagonists, and further work is needed to make such a distinction. SEM values were determined for each parameter and, although not presented here, typically are less than 3% and frequently less than 1% of the maximal carbachol response for efficacy measures for ligands potent enough to reach maximal efficacy at 10 μM. SEM values for EC50 and IC50 values were no more than a factor of 2. See Table 2 for structures. For compounds that were not potent enough to cause maximal inhibition at the highest concentration tested, inactivation efficacy was fixed at 100% to allow IC50 values to be fit during graphical analysis.

α4β2- over α3β4*-ergic receptors (174- and 150-fold) in the binding affinity assays (Table 2), this selectivity does not translate to the functional assay (Tables 3 and 4, Figure 3). None of the compounds displayed significant activity at the α1β1δ-ergic nAChRs.

In Vivo Behavioral Studies—Mouse Forced Swim Test. Antidepressant efficacy was assessed with the mouse forced swim test, an assay in which a mouse is placed into a beaker of water, and the time it spends passively floating in the water (immobility) is recorded (Figure 4). Most traditional antidepressants decrease the amount of time the mouse spends immobile. Mice were administered compounds 39 (1 and 5 mg/kg ip) or the selective serotonin reuptake inhibitor (SSRI) antidepressant, sertraline, as a positive control (10 mg/kg).

Drug administration produced a reduction in immobility. Fisher’s post hoc tests showed that compound 43 reduced immobility at both doses (1 and 5 mg/kg), suggestive of a...
potent antidepressant-like effect. Moreover, 43 was also active at an orally administered dose of 5 mg/kg.

Broad Screening at Other Neurotransmitter Receptors and Transporters. A broad-range screening study was carried out for compound 43 to further determine its effects at 10 μM on about 45 other CNS neurotransmitter receptors and transporters, including serotonin receptors, dopamine receptors, GABA receptors, biogenic amine transporters, adrenergic receptors, muscarinic receptors, opioid receptors, sigma receptors, and histamine receptors (NIMH-PDSP, University of North Carolina, Chapel Hill). No inhibition caused by 10 μM on about 45 other CNS neurotransmitter receptors and transporters was observed.

Preliminary in Vitro ADME-Tox Profile. Compound 43 showed good properties in assays for cytochrome P450 (CYP) inhibition, metabolic stability, and plasma protein binding (SRI, Stanford Research Institute), as well as hERG (human ether-a-go-go-related gene) inhibition (NIMH-PDSP) (see the Supporting Information).

CYP Inhibition. The inhibitory effect of 43 on in vitro CYP activity in human liver microsomes was screened using a high-throughput multiple CYP assay for CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. In the presence of 1 μM and 10 μM of 43, none of these CYP isoforms’ activity was reduced to less than 70% of the control, suggesting that 43 will not alter the metabolism of other xenobiotics or endogenous compounds that are substrates for the CYP isoforms tested.

Metabolic Stability. The metabolic stability of 43 was studied using human and mouse liver microsomes. The test article was incubated at two concentrations (1 μM and 10 μM), and aliquots (100 μL) were removed at various time points (0, 15, 30, and 60 min) for analysis by LC-MS/MS. This study showed that liver microsomes from both species caused a time-dependent decrease in parent drug at both concentrations. Human liver microsomes metabolized 43 to a greater extent in 60 min than mouse liver microsomes; 53.4% and 67.2% of the parent drug remained unchanged at 1 μM and 10 μM, respectively. Incubation with mouse liver microsomes resulted in 67.5% and 73.7% of 43 remaining unchanged after 60 min incubation at 1 μM and 10 μM, respectively.

PPB (Plasma Protein Binding). The binding of 43 to proteins in human and mouse plasma was determined using equilibrium dialysis. Binding of 43 was evaluated at concentrations of 0, 0.1, 1, and 10 μM. The mean percentage of binding of this compound to plasma ranged from 8.2% to 17.7%. Its mean percentage of binding to mouse plasma ranged from 12.9% to 19.3%.

hERG Inhibition. HEK293 cells stably expressing recombinant human hERG were used in a fluorescence-based membrane potential assay. The observed hERG inhibition of 43 at 10 μM was similar to that of the negative control, giving 0% hERG blockade.

CONCLUSIONS

In the present study, a new series of isoxazole ether nAChR ligands have been identified, and their preliminary SAR has been explored. In the PDSP binding study, most of the 5-alkoxyisoxazole ligands were found to bind to the rat α4/2-nAChR with a significantly higher affinity than to the α3/β4*-nAChR. Compound 43 was identified as the lead compound from this series as it was displayed favorable in vitro nAChR binding affinities. The functional potency of isoxazole 43 at the α4/2-nAChR is similar to that of compound 1, but it has higher efficacy, helping to distinguish it from compound 1. When tested in vivo, compound 43 demonstrated a potent antidepressant-like activity at both 5 mg/kg and 1 mg/kg ip, and was orally active at 5 mg/kg in the mouse forced swim test. Preliminary in vitro ADME-Tox characterization further suggested promising drug-like properties of 43. The PDSP broad range screening indicated that compound 43 was highly selective for nAChRs and did not have significant binding affinity to the other 45 neurotransmitter receptors and transporters tested.

It remains unclear whether activity at the α3/β4*-nAChR subtype is an attribute or a detriment for treatment of depression. Further studies are required to fully understand the importance of α3/β4*-nAChR involvement in depression. Our previously reported nicotinic ligands such as sazetidine-A and 3-alkoxy-S-aminopyridine derivatives, that contain appropriate substituents in the S-position of their pyridine rings, exhibited improved selectivity for β2-over β4-containing nAChRs. Considering that the present isoxazole ligands are easily accessible through substitution reactions performed upon a preassembled isoxazole building block, the S-alkoxyisoxazole scaffold should be a useful starting point for a broader optimization campaign to discover more α4/β2-selective nAChR ligands, perhaps importantly with higher efficacy than...
compound I, that may in due course lead to a novel treatment option for depression.

EXPERIMENTAL SECTION

General Methods. Starting materials, reagents, and solvents were purchased from commercial suppliers and used without further purification, unless otherwise stated. Anhydrous THF and CH₂Cl₂ were obtained by distillation over sodium wire or CaH₂, respectively. All nonaqueous reactions were run under an argon atmosphere with exclusion of moisture from reagents, and all reaction vessels were oven-dried. The progress of reactions was monitored by TLC on SiO₂. Spots were visualized by their quenching of the fluorescence of an indicator admixed to the SiO₂ layer, or by dipping into KMnO₄ solution followed by heating. SiO₂ for column chromatography (CC) was purchased from commercial suppliers and used without further purification.

General Procedure for the Mitsunobu Reaction of 1-(tert-Butyloxycarbonyl)-2-(S)-azetidinylmethanol (15) or 1-(tert-Butyloxycarbonyl)-2-(S)-pyrrolidinylmethanol (25) with Hydroxysizoxoles to Afford Alkoxyisoxazoles (Method B). To a stirred solution of an (iodomethyl)isoxazole (1 mmol), alcohols 15 or 25 (1.2 mmol), and PPh₃ (1.5 mmol) in anhydrous THF (20 mL) was added diethyl azodicarboxylate or diisopropyl azodicarboxylate (1.5 mmol) dropwise. After stirring overnight at rt, the solvent was evaporated, and the residue was dissolved in distilled water (about 2–3 mL). The solution was lyophilized to obtain the TFA salt.

General Procedure for the Mitsunobu Reaction of 1-(tert-Butyloxycarbonyl)-2-(S)-azetidinylmethanol (15) or 1-(tert-Butyloxycarbonyl)-2-(S)-pyrrolidinylmethanol (25) with Hydroxysizoxoles to Afford Alkoxyisoxazoles (Method B). To a stirred solution of an (iodomethyl)isoxazole (1 mmol), alcohol 15 or 25 (1.2 mmol), and PPh₃ (1.5 mmol) in anhydrous THF (20 mL) was added diethyl azodicarboxylate or diisopropyl azodicarboxylate (1.5 mmol) dropwise. After stirring overnight at rt, the solvent was evaporated, and the residue was dissolved in EtOAc. The solution was washed with water (20 mL) and brine (15 mL), dried over Na₂SO₄, and concentrated under a vacuum. The residue was purified by CC on SiO₂ to give the alkoxyisoxazole.

General Procedure for the Reduction of Isoxazolcarboxylic Acid Esters to Alcohols (Method C). To a solution of an isoxazolcarboxylic acid ester (1 mmol) in anhydrous THF (20 mL) was added LiBH₄ (4 mmol) with ice cooling under Ar. After stirring overnight at rt, saturated aqueous NH₄Cl solution was added with ice cooling. Extraction with EtOAc, drying over Na₂SO₄, and CC on SiO₂ gave the alcohol.

General Procedure for the Preparation of Alcohols from Carbamates from Alcohols (Method F). To a solution of an isoxazolmethanol (1 mmol) in anhydrous DMF (2 mL) was added NaH (60% dispersion in oil, 1.9 mmol) with ice cooling under Ar. After stirring for 30 min at rt, alkyl halide (1 mmol) was added. Stirring was continued for 2 h at rt, then the reaction mixture was quenched with saturated aqueous NH₄Cl solution with ice cooling. The mixture was extracted with EtOAc (2 × 15 mL), and the combined organic phases were washed with water (3 × 10 mL), dried over Na₂SO₄, and evaporated. The residue was purified by CC on SiO₂ to give the product.

General Procedure for the Preparation of Aldehydes from Alcohols (Method G). To a solution of an (iodomethyl)isoxazole (1 mmol) in anhydrous DMF (2 mL) was added NaH (60% dispersion in oil, 1.9 mmol) with ice cooling under Ar. After stirring for 30 min at rt, alkyl halide (1 mmol) was added. Stirring was continued for 2 h at rt, then the reaction mixture was quenched with saturated aqueous NH₄Cl solution with ice cooling. The mixture was extracted with EtOAc (2 × 15 mL), and the combined organic phases were washed with water (3 × 10 mL), dried over Na₂SO₄, and evaporated. The residue was purified by CC on SiO₂ to give the product.

General Procedure for the Preparation of Aldehydes from Alcohols (Method G). To a solution of an (iodomethyl)isoxazole (1 mmol) in anhydrous DMF (2 mL) was added NaH (60% dispersion in oil, 1.9 mmol) with ice cooling under Ar. After stirring for 30 min at rt, alkyl halide (1 mmol) was added. Stirring was continued for 2 h at rt, then the reaction mixture was quenched with saturated aqueous NH₄Cl solution with ice cooling. The mixture was extracted with EtOAc (2 × 15 mL), and the combined organic phases were washed with water (3 × 10 mL), dried over Na₂SO₄, and evaporated. The residue was purified by CC on SiO₂ to give the product.

General Procedure for the Preparation of Phenyl Esters from Alcohols (Method E). To a stirred solution of an (iodomethyl)-isoxazole (1 mmol) and phenol (2 mmol) in anhydrous DMF (4 mL) was added K₂CO₃ (6 mmol) under Ar. After stirring overnight at rt, saturated aqueous NH₄Cl solution was added. The mixture was extracted with EtOAc (2 × 15 mL), and the combined organic phases were washed with water (3 × 10 mL), dried over Na₂SO₄, and evaporated. The residue was purified by CC on SiO₂ to give the product.

General Procedure for the Preparation of Phenyl Aldehydes from Alcohols (Method F). To a solution of an isoxazolmethanol (1 mmol) in anhydrous DMF (2 mL) was added NaH (60% dispersion in oil, 1.9 mmol) with ice cooling under Ar. After stirring for 30 min at rt, alkyl halide (1 mmol) was added. Stirring was continued for 2 h at rt, then the reaction mixture was quenched with saturated aqueous NH₄Cl solution with ice cooling. The mixture was extracted with EtOAc (2 × 15 mL), and the combined organic phases were washed with water (3 × 10 mL), dried over Na₂SO₄, and evaporated. The residue was purified by CC on SiO₂ to give the product.

General Procedure for the Preparation of Phenyl Aldehydes from Alcohols (Method F). To a solution of an isoxazolmethanol (1 mmol) in anhydrous DMF (2 mL) was added NaH (60% dispersion in oil, 1.9 mmol) with ice cooling under Ar. After stirring for 30 min at rt, alkyl halide (1 mmol) was added. Stirring was continued for 2 h at rt, then the reaction mixture was quenched with saturated aqueous NH₄Cl solution with ice cooling. The mixture was extracted with EtOAc (2 × 15 mL), and the combined organic phases were washed with water (3 × 10 mL), dried over Na₂SO₄, and evaporated. The residue was purified by CC on SiO₂ to give the product.
yield employing Method C. The title compound employing Method A and Gradient III. Colorless oil; yield 67%; J (t, 3H, \[\text{[1-} (m, 2H), 1.04 (m, 1H), 0.56 D2O)\]
13C NMR (100 MHz, D2O) δ 172.3, 166.1, 164.8 (TFA), 159.9 (TFA), 94.6, 75.7, 67.6, 62.2, 58.4, 43.2, 19.8, 9.2, 2.1. Anal. Calcld for C8H17N3O.1TFA.0.5H2O (FW 378): C, 54.53; H, 5.48; N, 7.46; F, 16.70. Found: C, 45.20; H, 5.19; N, 7.31; F, 16.84.

3-[(1R,2R,3S)-Azetidinylmethyl]hexyl-3-methylisoxazole (23). This compound was obtained from (1R,2R,3S)-azetidinylmethyl and 3-hydroxy-5-methylisoxazole as a pale-yellow solid in 76% yield employing Method B. 1H NMR (400 MHz, CDCl3) δ 5.63 (s, 1H), 4.48–4.42 (m, 2H), 4.29–4.26 (m, 2H), 4.06 (m, 1H), 3.40 (d, 2H, J = 7.2 Hz), 2.69–2.62 (m, 1H), 1.04 (m, 1H), 0.56–0.52 (m, 2H, 0.22–0.18 (m, 18 H). 13C NMR (100 MHz, CDCl3) δ 170.9, 170.2, 162.2 (TFA), 115.9 (TFA), 146.1, 75.7, 67.6, 62.2, 58.4, 43.2, 19.8, 9.2, 2.1. Anal. Calcld for C8H17N3O.1TFA.0.5H2O (FW 378): C, 54.53; H, 5.48; N, 7.46; F, 16.70. Found: C, 45.20; H, 5.19; N, 7.31; F, 16.84.

3-[(1R,2R,3S)-Azetidinylmethyl]hexyl-3-methylisoxazole (24). This compound was obtained employing Methods A and Grad III. Colorless oil; yield 58%; purity 99.7%. [α]D20 = −0.2 (c = 2.4, MeOH); 1H NMR (400 MHz, CDCl3) δ 5.90 (s, 1H), 4.98 (m, 1H), 4.46 (m, 1H), 4.12 (m, 1H), 4.00 (m, 1H), 2.66–2.58 (m, 2H, 2.30 (m, 3H)); 13C NMR (100 MHz, CDCl3) δ 172.3, 171.2, 162.1 (TFA), 115.9 (TFA), 92.4, 67.3, 58.5, 43.2, 19.8, 11.6. Anal. Calcld for C8H17N3O.1TFA.0.5H2O (FW 312): C, 40.01; H, 4.64; N, 9.06; F, 21.20. Found: C, 39.88; H, 4.43; N, 9.11; F, 21.41.

5-[(1R,2R,3S)-Azetidinylmethyl]hexyl-3-carboxylic Acid Ethyl Ester (27). This compound was obtained from (1R,2R,3S)-azetidinylmethyl and 5-hydroxyisoxazol-3-carboxylic acid ethyl ester (Princeton Bio) as a pale-yellow solid in 55% yield employing Method B. 1H NMR (400 MHz, CDCl3) δ 5.71 (s, 1H), 4.52 (m, 2H), 4.41 (q, 2H, J = 7.2 Hz), 4.31 (dd, 1H, J = 4.0, 10.4 Hz), 3.89–3.84 (m, 2H), 1.41 (s, 9H), 1.25 (t, 3H, J = 7.2 Hz).

5-[(1R,2R,3S)-Azetidinylmethyl]hexyl-3-carboxylic Acid Ethyl Ester (28). This compound was obtained from the (1R,2R,3S)-azetidinylmethyl and 5-hydroxyisoxazol-3-carboxylic acid ethyl ester as a pale-yellow solid in 65% yield employing Method B. 1H NMR (400 MHz, CDCl3; two rotamers about the N-Boc bond in an approximate ratio of 1:1) δ 5.66 (br, 1H), 4.35 (q, 2H, J = 7.2 Hz), 4.28 (br, 1.5H), 4.07 (br, 1.5H), 3.29 (br, 2H), 2.01–1.83 (m, 4H), 1.41 (s, 9H), 1.34 (t, 3H, J = 7.2 Hz).

5-[(1R,2R,3S)-Azetidinylmethyl]hexyl-3-isoxazolylmethan-30. This compound was obtained from 5-[(1R,2R,3S)-azetidinylmethyl]hexyl-3-carboxylic acid ethyl ester as a pale-yellow solid in 94% yield employing Method C. 1H NMR (400 MHz, CDCl3; two rotamers about the N-Boc bond in an approximate ratio of 1:1) δ 5.66 (br, 1H), 4.35 (q, 2H, J = 7.2 Hz), 4.28 (br, 1.5H), 4.07 (br, 1.5H), 3.29 (br, 2H), 2.01–1.83 (m, 4H), 1.41 (s, 9H), 1.34 (t, 3H, J = 7.2 Hz).

5-[(1R,2R,3S)-Azetidinylmethyl]hexyl-3-isoxazolymethan-30. This compound was obtained from 5-[(1R,2R,3S)-azetidinylmethyl]hexyl-3-carboxylic acid ethyl ester as a pale-yellow solid in 94% yield employing Method C. 1H NMR (400 MHz, CDCl3; two rotamers about the N-Boc bond in an approximate ratio of 1:1) δ 5.66 (br, 1H), 4.35 (q, 2H, J = 7.2 Hz), 4.28 (br, 1.5H), 4.07 (br, 1.5H), 3.29 (br, 2H), 2.01–1.83 (m, 4H), 1.41 (s, 9H), 1.34 (t, 3H, J = 7.2 Hz).

5-[(1R,2R,3S)-Azetidinylmethyl]hexyl-3-isoxazolymethan-30. This compound was obtained from 5-[(1R,2R,3S)-azetidinylmethyl]hexyl-3-carboxylic acid ethyl ester as a pale-yellow solid in 94% yield employing Method C. 1H NMR (400 MHz, CDCl3; two rotamers about the N-Boc bond in an approximate ratio of 1:1) δ 5.66 (br, 1H), 4.35 (q, 2H, J = 7.2 Hz), 4.28 (br, 1.5H), 4.07 (br, 1.5H), 3.29 (br, 2H), 2.01–1.83 (m, 4H), 1.41 (s, 9H), 1.34 (t, 3H, J = 7.2 Hz).
5-[(2S)-Azetidinyl]methoxy]-3-(fluoromethyl)isoxazole (70 mg, 16%) as a yellow solid in 67% crude yield employing Method B. 1H NMR (400 MHz, CDCl3) δ 1.36 (s, 9H), 3.40 (t, 2H, 6.8 Hz), 3.78 (t, 2H, 7.2 Hz), 2.60–2.64 (m, 2H), 2.30 (s, 3H), 2.16–2.20 (m, 2H), 1.90 (m, 2H), 1.54–1.58 (m, 4H), 1.25 (t, 3H, 7.2 Hz).}{\textit{MS:} C15H19FNO2 [M+H]+ 285.1 (100%).}

In Vitro Binding Studies. [H]Epibatidine competition studies were carried out using a 24-well plate assay. The results are expressed as [H]Epibatidine concentration required to displace 50% of the radioligand bound (IC50) to the respective receptor.

Cell Lines and Culture. Cell lines naturally or heterologously expressing specific, functional, human nAChR subtypes were used. The human clonal cell line TE671/RD naturally expresses human muscle-type α1*-nAChRs, containing α1, β1, β2, and δ subunits, with function detectable using 86Rb+ efflux assays. The human promyelocytic cell line SH-SYSY naturally expresses autonomic α3β4*-nAChRs, containing α3, β4, probably α5, and sometimes β2 subunits, and also displays function detectable using 86Rb+ efflux assays. SH-SYSY cells also express homopentameric α7-nAChRs; however, their function is not detected in the 86Rb+ efflux assay under the conditions used. SH-EPI human epithelial cells stably transfected with human α4 and β2 subunits (SH-EPI-hα4β2 cells) have been established and characterized with both ion flux and radioligand binding assays.

TE671/RD, SH-SYSY, and transfected SH-EPI cell lines were maintained as low passage number (1–26 from our frozen stocks) cultures to ensure stable expression of native or heterologously expressed nAChRs as previously described. Cells were passaged once a week by splitting just-confluent cultures 1:300 (TE671/RD), 1:10 (SH-SYSY), or 1:40 (transfected SH-EPI) in serum-supplemented medium to maintain log-phase growth. 86Rb+ Efflux Assays. Function of nAChR subtypes was investigated using an established 86Rb+ efflux assay protocol. The assay is specific for nAChR function under the conditions used, for example, giving identical results in the presence of 100 nM atropine to exclude possible contributions of muscarinic acetylcholine receptors. Cells harvested at confluence from 100 mm plates under a stream of fresh medium only (SH-SYSY cells) or after mild trypsinization (Irvine Scientific, USA; for TE671/RD or transfected SH-EPI cells) were then suspended in complete medium and evenly seeded at a density of 1.25–2.0 × 105 cells per well at a confluence of 50%. The 86Rb+ efflux plate was loaded with 100 μL of complete medium containing 100 nM carbamylcholine (EC50) and 8200 cpm of 86Rb+ in cell to maintain log-phase growth. After at least 4 h and typically overnight, 86Rb+ efflux was measured using the “flip-plate” technique. Briefly, after aspiration of the bulk of 86Rb+ loading medium from each well of the “cell plate,” each well containing cells was rinsed with 2 mL of fresh 86Rb+ efflux buffer (130 mM NaCl, 5.4 mM KCl, 2 mM CaCl2, 5 mM glucose, and 50 mM HEPES; pH 7.4) to remove extracellular 86Rb+. Following removal of residual rinse buffer by aspiration, the flip-plate technique was used again to simultaneously introduce 1.5 mL of fresh efflux buffer, containing drugs of choice at indicated final concentrations from a 24-well “efflux/drug plate” into the wells of the cell plate. After a 95 min incubation, the solution was “flipped” back into the efflux/drug plate, and any remaining buffer in the cell plate was removed by aspiration. Ten minutes after the initiation of the first drug treatment, a second efflux/drug plate was used to reintroduce the same concentrations of drugs of choice with the addition of an ~EC50 concentration of the full agonist carbamylcholine for 5 min (~EC50 concentrations were 200 μM for SH-EPI-hα4β2 cells, 2 μM for SH-SYSY cells, and 464 μM for TE671/RD cells). The second drug treatment was then flipped back into its drug plate, and the remaining cells in the cell plate were lysed and suspended by addition of 1.5 mL of 0.1 M NaOH with 0.1% sodium dodecyl sulfate to each well. Suspensions in each well were then subjected to Cerenkov counting and the Packard TriCarb 1900 Liquid Scintillation Analyzer. After at least 4 h and typically overnight, 86Rb+ efflux was measured using the “flip-plate” technique. Briefly, after aspiration of the bulk of 86Rb+ loading medium from each well of the “cell plate,” each well containing cells was rinsed with 2 mL of fresh 86Rb+ efflux buffer (130 mM NaCl, 5.4 mM KCl, 2 mM CaCl2, 5 mM glucose, and 50 mM HEPES; pH 7.4) to remove extracellular 86Rb+. Following removal of residual rinse buffer by aspiration, the flip-plate technique was used again to simultaneously introduce 1.5 mL of fresh efflux buffer, containing drugs of choice at indicated final concentrations from a 24-well “efflux/drug plate” into the wells of the cell plate. After a 95 min incubation, the solution was “flipped” back into the efflux/drug plate, and any remaining buffer in the cell plate was removed by aspiration. Ten minutes after the initiation of the first drug treatment, a second efflux/drug plate was used to reintroduce the same concentrations of drugs of choice with the addition of an ~EC50 concentration of the full agonist carbamylcholine for 5 min (~EC50 concentrations were 200 μM for SH-EPI-hα4β2 cells, 2 μM for SH-SYSY cells, and 464 μM for TE671/RD cells). The second drug treatment was then flipped back into its drug plate, and the remaining cells in the cell plate were lysed and suspended by addition of 1.5 mL of 0.1 M NaOH with 0.1% sodium dodecyl sulfate to each well. Suspensions in each well were then subjected to Cerenkov counting (Wallac Micobeta TriLum 1450; 25% efficiency) after placement of inserts (Wallac 1450-109) into each well to minimize cross-talk between wells.

For quality control and normalization purposes, the sum of 86Rb+ in cell plates and efflux/drug plates was defined to confirm material balance (i.e., that the sum of 86Rb+ released into the efflux/drug plates and 86Rb- remaining in the cell plate were the same for each well). Similarly, the sum of 86Rb+ in cell plates and efflux/drug plates also determined the efficiency of 86Rb- loading (the percentage of applied 86Rb+ actually loaded into cells). Furthermore, the sum of 86Rb+ in cell
plates and the second efflux/drug plates defined the amount of intracellular 86Rb+ available at the start of the second, 5 min assay and were used to normalize nAChR function assessed.

For each experiment, in one set of control samples, total 86Rb+ efflux was assessed in the presence of a fully efficacious concentration of carbachol, alone (1 mM for SH-EPI-b4G2 and TE671/10D cells, or 3 mM for SH-SY5Y cells). Nonspecific 86Rb+ efflux in another set of control samples was measured either in the presence of the fully efficacious concentration of carbachol plus 100 μM mecamylamine, which gave full block of agonist-induced and spontaneous nAChR-mediated ion flux, or in the presence of efflux buffer alone. Both determinations of nonspecific efflux were equivalent. Specific efflux was then taken as the difference in control samples between total and nonspecific 86Rb+ efflux. The same approaches were used to define total, nonspecific, and specific ion flux responses in samples subjected to the second, 5 min, exposure to test drug or without carbachol at its ∼EC$_{50}$ concentration.

Intrinsic agonist activity of test drugs was ascertained during the first 9.5 min of the initial 10 min exposure period using samples containing test drug only at different concentrations and was normalized, after subtraction of nonspecific efflux, to specific efflux in carbachol control samples. Specific 86Rb+ efflux elicited by test drug as a percentage of specific efflux in carbachol controls was the same in these samples whether measured in absolute terms or as a percentage of loaded 86Rb+. Even in samples previously giving an efflux response during the initial 10 min exposure to a partial or full agonist, residual intracellular 86Rb+ was adequate to allow assessment of nAChR function in the secondary, 5 min assay. However, care was needed to ensure that data were normalized to the amount of intracellular 86Rb+ available at the time of the assay, as absolute levels of total, nonspecific, or specific efflux varied in cells partially depleted of intracellular 86Rb+ due to action of any agonist present during the 10 min drug exposure period. That is, calculations of specific efflux as a percentage of loaded 86Rb+ typically were corrected for any variation in the electrochemical gradient of 86Rb+ created by intracellular ion depletion after the first (agonism/pretreatment) drug treatment.

Ion flux assays (n ≥ 3 separate studies for each drug and cell line combination) were fit to the Hill equation, $F = F_{max}/(1 + (X/EC_{50})^n)$, where F is the percentage of control, F_{max} for EC$_{50}$ (n > 0 for agonists) or IC$_{50}$ (n < 0 for antagonists) values using Prism 4 (GraphPad, San Diego, USA). Most ion flux data were fit allowing maximum and minimum ion flux values to be determined by curve fitting but in some cases, where antagonists or agonists had weak functional potency, minimum ion flux was set at 0% of control or maximum ion flux was set at 100% of control, respectively.

GENERAL PROCEDURES FOR BEHAVIORAL STUDIES

Animals. BALB/cj male mice (8—10 weeks old at testing) were obtained from Jackson Laboratory (Bar Harbor, ME, USA). Mice were housed four to a cage in a colony room maintained at 22 ± 2 °C on a 12 h light—dark cycle. All animal experiments were conducted in accordance with the NIH Guide for the Care and Use of Laboratory Animals and the PsychoGenics Animal Care and Use Committee.

Drugs. Compounds 43 were synthesized as described above, and serotonin was purchased from Toronto Research Chemicals (Ontario, Canada). All compounds were dissolved in injectable water and administered by intraperitoneal (IP) injection or oral gavage (PO) in a volume of 10 mL/kg.

Mouse Forced Swim Test. Procedures were based on those previously described. Mice were individually placed into clear glass cylinders (15 cm tall ×10 cm wide, 1 L beakers) containing 23 ± 1 °C water 12 cm deep (approximately 800 mL). Mice were administered vehicle, the SSRI sertraline (10 or 20 mg/kg) as a positive control, or compound 43 (1 or 5 mg/kg). Thirty minutes following IP or PO administration, mice were placed in the water, and the time the animal spent immobile was recorded over a 6 min trial. Immobility was defined as the postural position of floating in the water.

Statistical Analysis. Data were analyzed with analysis of variance (ANOVA) with treatment group (vehicle, sertraline, or compound 43 (1 and 5 mg/kg)) as the between group variable and total time immobile (seconds over the 6 min trial) as the dependent variable. Significant main effects were followed up with the post hoc Fisher’s test.

ASSOCIATED CONTENT

Supporting Information

Broad screening data and detailed preliminary in vitro ADME-Tox profile. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

Phone: +1-312-996-7577; fax: +1-312-996-7107; e-mail: kozikowa@uic.edu.

ACKNOWLEDGMENTS

This research was supported by Award Number U19MH085193 from the National Institute of Mental Health. The Phoenix research component was also supported in part by the Barrow Neurological Foundation and was conducted in part in the Charlotte and Harold Simensky Neurochemistry of Alzheimer’s Disease Laboratory. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Mental Health or the National Institutes of Health. We thank the PDSP program for performing binding affinity assays, and SRI for performing ADME studies.

ABBREVIATIONS

CNS, central nervous system; AD, Alzheimer’s disease; ADHD, attention deficit hyperactivity disorder; NIMH-PDSP, National Institute of Mental Health Psychoactive Drug Screening Program; nAChR(s), nicotinic acetylcholine receptor(s); SAR, structure—activity relationship; ADME-Tox, absorption, distribution, metabolism, excretion, and toxicity; SSRI, selective serotonin reuptake inhibitor; CYP, cytochrome P450; PPB, plasma protein binding; hERG, human ether-a-go-go-related gene; CC, column chromatography; rt, room temperature; TFA, trifluoroacetic acid

REFERENCES

(6) Romanelli, M. N.; Gratteri, P.; Guandalini, L.; Martin; E.; Bonaccini, C.; Gualtieri, F. Central nicotinic receptors: structure,

(22) Mineur, Y. S.; Somenzi, O.; Picciotto, M. R. Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/6 mice. Neuropharmacology 2007, 52, 1256−1262.

(49) K determinations were generously provided by the National Institute of Mental Health’s Psychoactive Drug Screening Program, Contract # HHSN-271-2008-00025-C (NIMH PDSP). The NIMH PDSP is Directed by Bryan L. Roth, MD, PhD, at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda, MD, USA.

